Recursive Construction of the Minimal Digraphs

被引:0
|
作者
Bouaziz, Moncef [1 ,3 ]
Alzohairi, Mohammad [1 ]
Boudabbous, Youssef [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, BP 2455, Riyadh 111451, Saudi Arabia
[2] Univ La Reunion, Fac Sci & Technol PTU, Lab Informat & Math LIM, 2 Rue Joseph Wetzel, F-97490 St Clotilde, France
[3] Univ Tunis El Manar, Inst Super Technol Med Tunis, 9 Rue Docteur Zouheir Safi, Tunis 1006, Tunisia
关键词
Module; prime; isomorphism; minimal digraph;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a digraph D, a module is a vertex subset M such that every vertex outside M does not distinguish the vertices in M. A digraph D with more than two vertices is prime if O, the single-vertex sets, and V(D) are the only modules in D. A prime digraph D is k-minimal if there is some k-element vertex subset U such that no proper induced subdigraph of D containing U is prime. This concept was introduced by A. Cournier and P. Ille in 1998. They characterized the 1-minimal and 2-minimal digraphs. In 2014, M. Alzohairi and Y. Boudabbous described the 3-minimal triangle-free graphs, and in 2015, M. Alzohairi described a class of 4-minimal triangle-free graphs. In this paper, we give a recursive procedure to construct the minimal digraphs. More precisely, given an integer k, with k >= 3, we give a method for constructing the k-minimal digraphs from the (k - 1)-minimal digraphs.
引用
收藏
页码:519 / 539
页数:21
相关论文
共 50 条
  • [41] BOUNDS OF THE LONGEST DIRECTED CYCLE LENGTH FOR MINIMAL STRONG DIGRAPHS
    Chen Zibo Zhang Fuji
    新疆大学学报(自然科学版), 1989, (02) : 108 - 108
  • [42] Generating Minimal Unsatisfiable SAT Instances from Strong Digraphs
    Kusper, Gabor
    Balla, Tamas
    Biro, Csaba
    Tajti, Tibor
    Yang, Zijian Gyozo
    Bajak, Imre
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 84 - 92
  • [43] A RECURSIVE APPROACH FOR ENUMERATING MINIMAL CUTSETS IN A NETWORK
    YAN, L
    TABA, HA
    LANDERS, TL
    IEEE TRANSACTIONS ON RELIABILITY, 1994, 43 (03) : 383 - 388
  • [44] AN ALGORITHM FOR FINDING A MINIMAL RECURSIVE PATH ORDERING
    AITKACI, H
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1985, 19 (04): : 359 - 382
  • [45] RECURSIVE SPECTRA OF FLAT STRONGLY MINIMAL THEORIES
    Andrews, Uri
    Mermelstein, Omer
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 381 - 395
  • [46] Accuracy in Recursive Minimal State Space Methods
    Damian, Pierri
    COMPUTATIONAL ECONOMICS, 2024, 64 (01) : 263 - 305
  • [47] Minimal Trellis for Systematic Recursive Convolutional Encoders
    Pimentel, Cecilio
    Souza, Richard Demo
    Uchoa-Filho, Bartolomeu F.
    Benchimol, Isaac
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [48] Systematic recursive construction of LDPC codes
    Miladinovic, N
    Fossorier, M
    IEEE COMMUNICATIONS LETTERS, 2004, 8 (05) : 302 - 304
  • [49] A GENERAL RECURSIVE CONSTRUCTION FOR QUADRUPLE SYSTEMS
    HARTMAN, A
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 33 (02) : 121 - 134
  • [50] Recursive Code Construction for Random Networks
    Skachek, Vitaly
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) : 1378 - 1382