Investigation of heavy metal pollution degree, pollution sources, and spatial distribution structure is crucial for the country's soil pollution prevention, but relevant research is lacking. In this study, As, Cd, Cr, Cu, Pb and Zn in the na-tional scope are taken as research objects. Among them, Cd has the highest pollution level. Four sources were quanti-tatively allocated as soil type, mining and dressing industry, GDP, and NDVI, which accounted for 92.93, 97.81, 99.30 and 96.24 % of Cr, Cd, Zn and As contamination, respectively. In addition, according to the geographical detector, the spatial distribution of As was affected by three diffusion pathways, whose influence degree were 0.822-0.947, espe-cially the slope. Cadmium was primarily affected by both receptor attributes and diffusion pathways, with an influence degree of 0.010-0.175, especially soil water content and slope; Cr and Pb were affected by receptor attributes, with an influence degree of 0.886-0.986 and 0.007-0.288, respectively, especially for soil water content and soil organic car -bon; Cu and Zn were affected by receptor attributes, with an influence degree of 0.182-0.823 and 0.002-0.150, respec-tively, especially for soil texture. There are two spatial distribution structures with nested scales in east-west and north-south directions. The large spatial structure has a more significant impact on the spatial distribution of heavy metals, especially in the east-west direction. Overall, the mining and dressing industry is the main source in Hunan, Yunnan, and Liaoning, where many mines exist and mining activities are frequent. GDP was the main source in Shang-hai and Zhejiang areas, where the economy is developed. NDVI was the main source in Guangdong and Anhui areas, where agriculture is relatively developed. These results provide a basis for determining remediation and prevention objectives in soil pollution remediation and prevention in the national scope.