An investigation of the MHD Cu-Al2O3/H2O hybrid-nanofluid in a porous medium across a vertically stretching cylinder incorporating thermal stratification impact

被引:16
|
作者
Paul, Ashish [1 ]
Nath, Jintu Mani [1 ,2 ]
Das, Tusar Kanti [1 ]
机构
[1] Cotton Univ, Dept Math, Gauhati 781001, Assam, India
[2] Mangaldai Coll, Dept Math, Mangaldai 784125, Assam, India
来源
JOURNAL OF THERMAL ENGINEERING | 2023年 / 9卷 / 03期
关键词
Heat Transfer; Stretching Vertical Cylinder; MHD; Heat Source; Sink; Boundary Layer; Bvp4c; BOUNDARY-LAYER-FLOW; HEAT-TRANSFER;
D O I
10.18186/thermal.1300847
中图分类号
O414.1 [热力学];
学科分类号
摘要
The thermal aspects of Cu - A1203/water hybrid nanofluid in a porous medium across a vertically stretched cylinder with the incorporation of heat sink/source impact are investigated in this numerical study. A magnetic field along the transverse direction of the stretching cylinder and the thermal buoyancy effect is considered in the flow problem. A pertinent similarity variable has been employed to simplify the boundary layer equations which govern the flow and convert the coupled nonlinear partial differential equations into a set of non-linear ordinary differential equations. The numerical results are computed using the 3-stage Lobatto IIIa technique, Bvp4c. The impacts of non-dimensional parameters, including Prandtl number, heat source/sink parameter, magnetic parameter, porosity parameter, curvature parameter, thermal stratification parameter, and thermal buoyancy parameter on the velocity curve, thermal curve, skin-friction coefficient, and Nusselt number, are illustrated graphically and numerically portrayed in tables. The important results demonstrate that hybrid nanofluids are more thermally conductive than nanofluids. Therefore, the hybrid nanofluid has a considerable impact on improving thermal developments. It has been found that the absolute skin friction of the hybrid nanofluid is up to 31% higher compared to the nanofluid. The heat transport rate of the hybrid nanofluid is 7.5% enhanced in comparison to the nanofluid. The influence of heat stratification of the hybrid nanofluid flow is appreciably significant.
引用
收藏
页码:799 / 810
页数:12
相关论文
共 50 条
  • [21] Shape factor effect of radiative Cu-Al2O3/H2O hybrid nanofluid flow towards an EMHD plate
    Khashi'ie, Najiyah Safwa
    Arifin, Norihan Md
    Sheremet, Mikhail
    Pop, Ioan
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 26
  • [22] A Novel Hybrid Model for Cu-Al2O3/H2O Nanofluid Flow and Heat Transfer in Convergent/Divergent Channels
    Khan, Umar
    Adnan
    Ahmed, Naveed
    Mohyud-Din, Syed Tauseef
    Baleanu, Dumitru
    Ilyas Khan
    Nisar, Kottakkaran Sooppy
    ENERGIES, 2020, 13 (07)
  • [23] Thermal Marangoni Flow Past a Permeable Stretching/Shrinking Sheet in a Hybrid Cu-Al2O3/Water Nanofluid
    Khashi'Ie, Najiyah Safwa
    Arifin, Norihan Md
    Pop, Ioan
    Nazar, Roslinda
    Hafidzuddin, Ezad Hafidz
    Wahi, Nadihah
    SAINS MALAYSIANA, 2020, 49 (01): : 211 - 222
  • [24] A numerical approach for MHD Al2O3-TiO2/H2O hybrid nanofluids over a stretching cylinder under the impact of shape factor
    Ghobadi, Amir Hossein
    Hassankolaei, Mosayeb Gholinia
    HEAT TRANSFER-ASIAN RESEARCH, 2019, 48 (08): : 4262 - 4282
  • [25] MHD Hybrid Cu-Al2O3/Water Nanofluid Flow with Thermal Radiation and Partial Slip Past a Permeable Stretching Surface: Analytical Solution
    Wahid, Nur Syahirah
    Arifin, Norihan Md
    Turkyilmazoglu, Mustafa
    Hafidzuddin, Mohd Ezad Hafidz
    Abd Rahmin, Nor Aliza
    JOURNAL OF NANO RESEARCH, 2020, 64 (64) : 75 - 91
  • [26] Transverse MHD flow of Al2O3-Cu/H2O hybrid nanofluid with active radiation: A novel hybrid model
    Gangadhar, Kotha
    Bhargavi, Dhanekula Naga
    Kannan, Thangavelu
    Venkata Subba Rao, Munagala
    Chamkha, Ali J.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [27] MHD Mixed Convective Heat Transfer of Cu-Al2O3 Water Hybrid Nanofluid over a Stretching Wedge with Ohmic Heating
    Mahdy, AbdElNasser S.
    Al-Arabi, Taghreed H.
    Rashad, Ahmed M.
    Saad, Wafaa
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (02) : 475 - 481
  • [28] Numerical thermal study on CNTs/C2H6O2- H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source
    Gholinia, M.
    Armin, M.
    Ranjbar, A. A.
    Ganji, D. D.
    CASE STUDIES IN THERMAL ENGINEERING, 2019, 14
  • [29] Steady Magnetohydrodynamic Flow of Cu-Al2O3/Water Hybrid Nanofluid Over a Yawed Cylinder
    Jenifer, A. Sahaya
    Saikrishnan, P.
    JOURNAL OF NANOFLUIDS, 2022, 11 (06) : 857 - 868
  • [30] Statistical and numerical analysis of unsteady hybrid nanoliquid flows over an elongating surface with oblique Lorentz force: A comparison of Cu-Al2O3/H2O, Cu-Al2O3/CH3OH and Cu-Al2O3/H2O-EG
    Nandi, Susmay
    Kumbhakar, Bidyasagar
    Seth, Gauri Shanker
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (17):