Phase Stability of Perovskite Oxide Electrodes under Operating Condition in Solid Oxide Fuel Cell

被引:3
|
作者
Lee, Jinsil [1 ]
Shin, Yonghun [2 ]
Kim, Taeyun [3 ]
Choi, Wooseon [4 ]
Jung, Min-Hyoung [4 ]
Kim, Young-Min [4 ]
Yoon, Kyung Joong [5 ]
Jeong, Hu Young [6 ]
Lee, Donghwa [2 ,7 ]
Joo, Jong Hoon [1 ,8 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Earth Sci & Environm Engn, Gwangju 61005, South Korea
[2] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 37673, South Korea
[3] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 61005, South Korea
[4] Sungkyunkwan Univ SKKU, Dept Energy Sci, Suwon 16419, South Korea
[5] Korea Inst Sci & Technol KIST, Ctr Energy Mat Res, Seoul 02792, South Korea
[6] Ulsan Natl Inst Sci & Technol UNIST, Grad Sch Semicond Mat & Devices Engn, Ulsan 44919, South Korea
[7] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 37673, South Korea
[8] Gwangju Inst Sci & Technol, Res Ctr Innovat Energy & Carbon Optimized Synth Ch, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
THIN-FILM ELECTRODES; OXYGEN REDUCTION; HIGH-PERFORMANCE; SURFACE MODIFICATION; DOPANT SEGREGATION; CATHODE MATERIALS; LA0.6SR0.4CO0.2FE0.8O3-DELTA; INTERFACE; TRANSPORT; EXCHANGE;
D O I
10.1021/acs.chemmater.3c03283
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite-based materials are typically used as electrodes in solid oxide cells (SOCs) owing to their high catalytic activity in oxygen exchange reactions. The degradation of typical SOCs is a well-known phenomenon that is primarily attributed to the A-site cation redistribution within perovskite-based electrodes at elevated operating temperatures. To date, investigations of the degradation and stability of perovskite electrodes have predominantly focused on assessing thin-film electrodes under an open-circuit voltage. This study proposes a detailed degradation mechanism of electrodes based on bulk-dense materials under the operating conditions of an actual solid oxide fuel cell. Our findings revealed that La0.6Sr0.4Co0.2Fe0.8O3-delta is decomposed into SrO, spinel phase ((CoFe)(3)O-4), and La-rich perovskite in the subsurface region under cathodic bias conditions. Additionally, the results of this study indicate that the phase decomposition associated with elements in the B-site must be considered to improve the enhancement of the stability and oxygen reduction reaction activity.
引用
收藏
页码:2933 / 2943
页数:11
相关论文
共 50 条
  • [31] Geometric Properties of Nanostructured Solid Oxide Fuel Cell Electrodes
    Zhang, Yanxiang
    Sun, Qiong
    Xia, Changrong
    Ni, Meng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) : F278 - F289
  • [32] Electrode activation and passivation of solid oxide fuel cell electrodes
    Koch, S
    Mogensen, M
    Hendriksen, PV
    Dekker, N
    Rietveld, B
    FUEL CELLS, 2006, 6 (02) : 117 - 122
  • [33] Kinetic and geometric aspects of solid oxide fuel cell electrodes
    Riso Natl Lab, Roskilde, Denmark
    Solid State Ionics, pt 2 (1151-1160):
  • [34] Porous an hollow nanofibers for solid oxide fuel cell electrodes
    Ahn, Minwoo
    Hwang, Sangyeon
    Han, Seungwoo
    Choi, Mingi
    Byun, Doyoung
    Lee, Wonyoung
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (08) : 1371 - 1378
  • [35] Kinetic and geometric aspects of solid oxide fuel cell electrodes
    Mogensen, M
    Skaarup, S
    SOLID STATE IONICS, 1996, 86-8 : 1151 - 1160
  • [36] Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes
    Jung, WooChul
    Tuller, Harry L.
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) : 5370 - 5378
  • [37] Exchange Current Density of Solid Oxide Fuel Cell Electrodes
    Yonekura, T.
    Tachikawa, Y.
    Yoshizumi, T.
    Shiratori, Y.
    Ito, K.
    Sasaki, K.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 1007 - 1014
  • [38] Experimental and modeling study of solid oxide fuel cell operating with syngas fuel
    Suwanwarangkul, R.
    Croiset, E.
    Entchev, E.
    Charojrochkul, S.
    Pritzker, M. D.
    Fowler, M. W.
    Douglas, P. L.
    Chewathanakup, S.
    Mahaudom, H.
    JOURNAL OF POWER SOURCES, 2006, 161 (01) : 308 - 322
  • [39] Silicon Volatility From Alumina and Aluminosilicates Under Solid Oxide Fuel Cell Operating Conditions
    Gentile, Paul S.
    Sofie, Stephen W.
    Key, Camas F.
    Smith, Richard J.
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2012, 9 (06) : 1035 - 1048
  • [40] EVALUATION METHOD FOR MECHANICAL PERFORMANCE OF SOLID OXIDE FUEL CELL UNDER SIMULATED OPERATING CONDITIONS
    Sato, Kazuhisa
    Fukui, Knichi
    Numao, Masayuki
    Hashida, Toshiyuki
    Mizusaki, Junichiro
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 671 - 676