Fast scrambling of mutual information in Kerr-AdS5

被引:2
|
作者
Malvimat, Vinay [1 ]
Poojary, Rohan R. [2 ]
机构
[1] Homi Bhaba Natl Inst HBNI, Saha Inst Nucl Phys, Theory Div, 1-AF Bidhannagar, Kolkata 700064, India
[2] TU Wien, Inst Theoret Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
AdS-CFT Correspondence; Black Holes; Black Holes in String Theory; Gauge-Gravity Correspondence;
D O I
10.1007/JHEP03(2023)099
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the disruption of mutual information in a TFD state dual to a Kerr black hole with equal angular momenta in AdS5 due to an equatorial shockwave. The shockwave respects the axi-symmetry of the Kerr geometry with specific angular momenta L-phi 1 & L-phi 2. The sub-systems considered are hemispheres in the left and the right dual CFTs with the equator of the S-3 as their boundary. We compute the change in the mutual information by determining the growth of the HRT surface at late times. We find that at late times leading up to the scrambling time the minimum value of the instantaneous Lyapunov index lambda((min))(L) is bounded by k = 2 pi TH/(1- mu L+) and is found to be greater than 2 pi T-H in certain regimes with T-H and mu denoting the black hole's temperature and the horizon angular velocity respectively while L+ = L-phi 1 + L-phi 2. We also find that for non-extremal geometries the null perturbation obeys L+ < mu(-1) for it to reach the outer horizon from the AdS boundary. The scrambling time at very late times is given by kappa tau(*) approximate to log S where S is the Kerr entropy. We also find that the onset of scrambling is delayed due to a term proportional to log(1- mu L+)(-1) which is not extensive and does not scale with the entropy of Kerr black hole.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] A Fast Algorithm to Estimate Mutual Information for Image Registration
    Hu, Yongxiang
    Tang, Jingtian
    Jiang, Hong
    Peng, Sancheng
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE FOR YOUNG COMPUTER SCIENTISTS, VOLS 1-5, 2008, : 720 - +
  • [32] Fast binary feature selection with conditional mutual information
    Fleuret, F
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 1531 - 1555
  • [33] Eye Registration Using A Fast Mutual Information Algorithm
    Dobes, M.
    ANALYSIS OF BIOMEDICAL SIGNALS AND IMAGES, 2008, : 35 - 38
  • [34] Fast computation of entropies and mutual information for multispectral images
    Ouattara, Sie
    Clement, Alain
    Chapeau-Blondeau, Francois
    ICINCO 2007: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL RA-1: ROBOTICS AND AUTOMATION, VOL 1, 2007, : 195 - 199
  • [35] FSMI: Fast computation of Shannon Mutual Information for information-theoretic mapping
    Zhang, Thengdong
    Henderson, Trevor
    Sze, Vivienne
    Karaman, Sertac
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 6912 - 6918
  • [36] FSMI: Fast computation of Shannon mutual information for information-theoretic mapping
    Zhang, Zhengdong
    Henderson, Theia
    Karaman, Sertac
    Sze, Vivienne
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (09): : 1155 - 1177
  • [37] A Fast Information-Theoretic Approximation of Joint Mutual Information Feature Selection
    Liu, Heng
    Ditzler, Gregory
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4610 - 4617
  • [38] Holographic drag force in 5d Kerr-AdS black hole
    Irina Ya. Aref’eva
    Anastasia A. Golubtsova
    Eric Gourgoulhon
    Journal of High Energy Physics, 2021
  • [39] Holographic drag force in 5d Kerr-AdS black hole
    Aref'eva, Irina Ya
    Golubtsova, Anastasia A.
    Gourgoulhon, Eric
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [40] Circular strings in Kerr-AdS5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AdS_{5}$$\end{document} black holes
    O. V. Geytota
    A. A. Golubtsova
    H. Dimov
    Vu H. Nguyen
    R. C. Rashkov
    General Relativity and Gravitation, 2023, 55 (2)