Zero entropy actions of amenable groups are not dominant

被引:1
|
作者
Lott, Adam [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
dominant systems; generic properties; amenable groups;
D O I
10.1017/etds.2023.17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A probability measure-preserving action of a discrete amenable group G is said to be dominant if it is isomorphic to a generic extension of itself. Recently, it was shown that for G =Z , an action is dominant if and only if it has positive entropy and that for any G, positive entropy implies dominance. In this paper, we show that the converse also holds for any G, that is, that zero entropy implies non-dominance.
引用
收藏
页码:630 / 645
页数:16
相关论文
共 50 条
  • [31] Approximation properties and entropy estimates for crossed products by actions of amenable discrete quantum groups
    Skalski, Adam
    Zacharias, Joachim
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 184 - 202
  • [32] AMENABLE ACTIONS OF DISCRETE-GROUPS
    ELLIOTT, GA
    GIORDANO, T
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 289 - 318
  • [33] Entropy of automorphisms arising from dynamical systems through discrete groups with amenable actions
    Choda, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (01) : 181 - 191
  • [34] Folner tilings for actions of amenable groups
    Conley, Clinton T.
    Jackson, Steve C.
    Kerr, David
    Marks, Andrew S.
    Seward, Brandon
    Tucker-Drob, Robin D.
    MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 663 - 683
  • [35] Scaled packing entropy for amenable group actions
    Hu Chen
    Zhiming Li
    Banach Journal of Mathematical Analysis, 2023, 17
  • [36] Packing topological entropy for amenable group actions
    Dou, Dou
    Zheng, Dongmei
    Zhou, Xiaomin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (02) : 480 - 514
  • [37] Scaled packing entropy for amenable group actions
    Chen, Hu
    Li, Zhiming
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [38] TOPOLOGICAL CONDITIONAL ENTROPY FOR AMENABLE GROUP ACTIONS
    Zhou, Xiaoyao
    Zhang, Yaqing
    Chen, Ercai
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 141 - 150
  • [39] Algebraic entropy of elementary amenable groups
    Osin, DV
    GEOMETRIAE DEDICATA, 2004, 107 (01) : 133 - 151
  • [40] Algebraic Entropy of Elementary Amenable Groups
    D. V. Osin
    Geometriae Dedicata, 2004, 107 : 133 - 151