On the sum of distance Laplacian eigenvalues of graphs

被引:9
|
作者
Pirzada, Shariefuddin [1 ]
Khan, Saleem [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
来源
TAMKANG JOURNAL OF MATHEMATICS | 2023年 / 54卷 / 01期
关键词
Distance matrix; distance Laplacian matrix; distance Laplacian eigenvalues; diameter; Wiener index;
D O I
10.5556/j.tkjm.54.2023.4120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph with n vertices, m edges and having diameter d. The distance Laplacian matrix DL is defined as DL = Diag(Tr) - D, where Diag(Tr) is the diagonal matrix of vertex transmissions and D is the distance matrix of G. The distance Laplacian eigenvalues of G are the eigenvalues of DL and are denoted by 61, 61, ... , 6n. In this paper, we obtain (a) the upper bounds for the sum of k largest and (b) the lower bounds for the sum of k smallest non-zero, distance Laplacian eigenvalues of G in terms of order n, diameter d and Wiener index W of G. We characterize the extremal cases of these bounds. Also, we obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of G. Finally, we obtain a sharp lower bound for the sum of the beta th powers of the distance Laplacian eigenvalues, where beta =6 0, 1.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [21] Bounding the sum of powers of the Laplacian eigenvalues of graphs
    Chen Xiao-dan
    Qian Jian-guo
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (02) : 142 - 150
  • [22] On the Sum of Powers of Normalized Laplacian Eigenvalues of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (03) : 917 - 930
  • [23] A note on sum of powers of the Laplacian eigenvalues of graphs
    Liu, Muhuo
    Liu, Bolian
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 249 - 252
  • [24] On the sum of powers of the signless Laplacian eigenvalues of graphs
    Cui, Shu-Yu
    Tian, Gui-Xian
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 81 : 243 - 255
  • [25] ON SUM OF POWERS OF LAPLACIAN EIGENVALUES AND LAPLACIAN ESTRADA INDEX OF GRAPHS
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 611 - 619
  • [26] On the sum of the generalized distance eigenvalues of graphs
    Ganie, Hilal A.
    Alhevaz, Abdollah
    Baghipur, Maryam
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [27] Distance Laplacian Eigenvalues and Chromatic Number in Graphs
    Aouchiche, Mustapha
    Hansen, Pierre
    FILOMAT, 2017, 31 (09) : 2545 - 2555
  • [28] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    JournalofMathematicalResearchwithApplications, 2014, 34 (06) : 647 - 654
  • [29] On the multiplicity of distance signless Laplacian eigenvalues of graphs
    Xue, Jie
    Liu, Shuting
    Shu, Jinlong
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (11): : 2276 - 2288
  • [30] On the sum of the two largest Laplacian eigenvalues of unicyclic graphs
    Zheng, Yirong
    Chang, An
    Li, Jianxi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,