On the sum of distance Laplacian eigenvalues of graphs

被引:9
|
作者
Pirzada, Shariefuddin [1 ]
Khan, Saleem [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
来源
TAMKANG JOURNAL OF MATHEMATICS | 2023年 / 54卷 / 01期
关键词
Distance matrix; distance Laplacian matrix; distance Laplacian eigenvalues; diameter; Wiener index;
D O I
10.5556/j.tkjm.54.2023.4120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph with n vertices, m edges and having diameter d. The distance Laplacian matrix DL is defined as DL = Diag(Tr) - D, where Diag(Tr) is the diagonal matrix of vertex transmissions and D is the distance matrix of G. The distance Laplacian eigenvalues of G are the eigenvalues of DL and are denoted by 61, 61, ... , 6n. In this paper, we obtain (a) the upper bounds for the sum of k largest and (b) the lower bounds for the sum of k smallest non-zero, distance Laplacian eigenvalues of G in terms of order n, diameter d and Wiener index W of G. We characterize the extremal cases of these bounds. Also, we obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of G. Finally, we obtain a sharp lower bound for the sum of the beta th powers of the distance Laplacian eigenvalues, where beta =6 0, 1.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [1] On the sum of distance signless Laplacian eigenvalues of graphs
    Khan, Saleem
    Pirzada, S.
    Das, Kinkar Chandra
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [2] On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs
    S. Pirzada
    Hilal A. Ganie
    A. Alhevaz
    M. Baghipur
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1143 - 1163
  • [3] ON THE SUM OF THE POWERS OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Pirzada, S.
    Ganie, Hilal A.
    Alhevaz, A.
    Baghipur, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1143 - 1163
  • [4] On the sum of Laplacian eigenvalues of graphs
    Haemers, W. H.
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2214 - 2221
  • [5] On the distance and distance Laplacian eigenvalues of graphs
    Lin, Huiqiu
    Wu, Baoyindureng
    Chen, Yingying
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 492 : 128 - 135
  • [6] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [7] On sum of powers of the Laplacian eigenvalues of graphs
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2239 - 2246
  • [8] On sum of powers of the Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Xu, Kexiang
    Liu, Muhuo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (11) : 3561 - 3575
  • [9] Characterization of extremal graphs from Laplacian eigenvalues and the sum of powers of the Laplacian eigenvalues of graphs
    Chen, Xiaodan
    Das, Kinkar Ch.
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1252 - 1263
  • [10] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):