Solving Expensive Multimodal Optimization Problem by a Decomposition Differential Evolution Algorithm

被引:18
|
作者
Gao, Weifeng [1 ]
Wei, Zhifang [1 ]
Gong, Maoguo [2 ]
Yen, Gary G. [3 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
[2] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
[3] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
关键词
Optimization; Statistics; Sociology; Mathematical models; Linear programming; Search problems; Costs; Differential evolution (DE); expensive multimodal optimization problems (EMMOPs); radial basis function (RBF); MULTIOBJECTIVE OPTIMIZATION; GLOBAL OPTIMIZATION; LANDSCAPE APPROXIMATION; SURROGATE MODELS; SIMULATION;
D O I
10.1109/TCYB.2021.3113575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An expensive multimodal optimization problem (EMMOP) is that the computation of the objective function is time consuming and it has multiple global optima. This article proposes a decomposition differential evolution (DE) based on the radial basis function (RBF) for EMMOPs, called D/REM. It mainly consists of two phases: the promising subregions detection (PSD) and the local search phase (LSP). In PSD, a population update strategy is designed and the mean-shift clustering is employed to predict the promising subregions of EMMOP. In LSP, a local RBF surrogate model is constructed for each promising subregion and each local RBF surrogate model tracks a global optimum of EMMOP. In this way, an EMMOP is decomposed into many expensive global optimization subproblems. To handle these subproblems, a popular DE variant, JADE, acts as the search engine to deal with these subproblems. A large number of numerical experiments unambiguously validate that D/REM can solve EMMOPs effectively and efficiently.
引用
收藏
页码:2236 / 2246
页数:11
相关论文
共 50 条
  • [41] A Self-adaptive Differential Evolution Algorithm for Solving Optimization Problems
    Farda, Irfan
    Thammano, Arit
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATION TECHNOLOGY (IC2IT 2022), 2022, 453 : 68 - 76
  • [42] A survey on expensive optimization problems using differential evolution
    Ren, Chongle
    Meng, Zhenyu
    APPLIED SOFT COMPUTING, 2025, 170
  • [43] A Constrained Sampling Assisted Differential Evolution for Expensive Optimization
    Wei, Feng-Feng
    Chen, Tai-You
    Shi, Xuan-Li
    Chen, Wei-Neng
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [44] Multimodal multiobjective optimization with differential evolution
    Liang, Jing
    Xu, Weiwei
    Yue, Caitong
    Yu, Kunjie
    Song, Hui
    Crisalle, Oscar D.
    Qu, Boyang
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 1028 - 1059
  • [45] Stratified Sampling Differential Evolution Algorithm For Global Optimization Problem
    Wen Shuhua
    Lu Qingbo
    Zhang Xueliang
    MANAGEMENT, MANUFACTURING AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 452-453 : 1491 - +
  • [46] An improved differential evolution algorithm and its application in optimization problem
    Wu Deng
    Shifan Shang
    Xing Cai
    Huimin Zhao
    Yingjie Song
    Junjie Xu
    Soft Computing, 2021, 25 : 5277 - 5298
  • [47] An improved differential evolution algorithm and its application in optimization problem
    Deng, Wu
    Shang, Shifan
    Cai, Xing
    Zhao, Huimin
    Song, Yingjie
    Xu, Junjie
    SOFT COMPUTING, 2021, 25 (07) : 5277 - 5298
  • [48] Clustering and Differential Evolution for Multimodal Optimization
    Boskovic, Borko
    Brest, Janez
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 698 - 705
  • [49] Differential Evolution Algorithm for the Optimization of the Vehicle Routing Problem in Logistics
    Xu, Huan
    Wen, Jiechang
    PROCEEDINGS OF THE 2012 EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2012), 2012, : 48 - 51
  • [50] A Differential Evolution Algorithm with Adaptive Strategies for Constrained Optimization Problem
    Wanma, Cuo
    Li, Hecheng
    Song, Erping
    2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 264 - 268