AgNPs Embedded in Porous Polymeric Framework: A Reusable Catalytic System for the Synthesis of α-Alkylidene Cyclic Carbonates and Oxazolidinones via Chemical Fixation of CO2

被引:7
|
作者
Banerjee, Bipasha [1 ]
Chakrabortty, Pekham [1 ]
Haque, Najirul [1 ]
Ghosh, Swarbhanu [2 ]
Sarkar, Mitali [1 ]
Khan, Aslam [3 ]
Islam, Sk. Manirul [1 ]
机构
[1] Univ Kalyani, Dept Chem, Kalyani 741235, WB, India
[2] McGill Univ, Dept Chem, Montreal, PQ H3A 0B8, Canada
[3] King Saud Univ, Coll Sci, Riyadh 11451, Saudi Arabia
关键词
CO2; fixation; heterogeneous catalyst; oxazolidinones; cyclic carbonates; Ag nanoparticle; COVALENT ORGANIC FRAMEWORK; VISIBLE-LIGHT; HETEROGENEOUS CATALYST; PROPARGYLIC ALCOHOLS; ATMOSPHERIC-PRESSURE; EFFICIENT CATALYST; HIGHLY EFFICIENT; OXIDATIVE CARBONYLATION; SILVER NANOPARTICLES; FACILE SYNTHESIS;
D O I
10.3390/catal13121467
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous polymeric frameworks have received great interest over the past few years because of their nonstop growth as crystalline porous polymeric materials connected through covalent bonds and versatile utilities in diverse fields. The production of high-value organic compounds via sustainable and environment-friendly methods is an uphill struggle for researchers. The elegant strategy of using carbon dioxide as a C1 building block is an intriguing platform owing to its non-toxicity, easy accessibility, natural abundance, recyclability, non-flammability, and cheapness. Additionally, CO2 levels are regarded as the main contributor to the greenhouse effect (the most abundant greenhouse gas across the globe) and the aforementioned strategy needs to mitigate CO2 emissions. This present study describes the synthesis of silver nanoparticles (AgNPs) embedded in a porous polymeric framework, a reusable heterogeneous catalyst (recyclable over 5 times), TpMA (MC)@Ag. The synthesized catalyst is characterized by using FT-IR, PXRD, XPS, FE-SEM, TEM, EDAX, TGA DTA, and N-2 sorption studies. Additionally, the catalysts can be easily recycled to generate the desired alpha-alkylidene cyclic carbonates and oxazolidinone compounds under solvent-free conditions. This research demonstrates the potential of nanoporous 2D porous polymeric framework-based materials in the area of catalysis, specially, in CO2 capture and chemical fixation. These findings offer a promising approach for the chemical fixation of CO2 into alpha-alkylidene cyclic carbonates and oxazolidinones from propargylic alcohols utilizing AgNPs embedded in a 2D catalyst, which functions as a potential heterogeneous catalyst under mild conditions (e.g., solvent-free approach).
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Titanocene dichloride/KI: an efficient catalytic system for synthesis of cyclic carbonates from epoxides and CO2
    Bai, Dongsheng
    Nian, Guanghui
    Wang, Guangjian
    Wang, Zhongzhen
    APPLIED ORGANOMETALLIC CHEMISTRY, 2013, 27 (03) : 184 - 187
  • [32] Silver Nanoparticles Incorporated Covalent Organic Framework Catalyzed Sustainable Synthesis of Cyclic Carbonates and Oxazolidinones Under Atmospheric CO2 Pressure: A Novel Approach of CO2 Utilization
    Mondal, Titu
    Sarkar, Priyanka
    Islam, Mohammad Shahidul
    Dahlous, Kholood A.
    Islam, Sk. Manirul
    CHEMISTRYSELECT, 2025, 10 (03):
  • [33] DBU/benzyl bromide: an efficient catalytic system for the chemical fixation of CO2 into cyclic carbonates under metal- and solvent-free conditions
    Wang, Lin
    Kodama, Koichi
    Hirose, Takuji
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (11) : 3872 - 3877
  • [34] Chemical fixation of CO2 to cyclic carbonates under mild conditions with a novel binary catalyst
    Lü, XB
    Zhang, YJ
    Liang, B
    Wang, H
    He, R
    CHINESE JOURNAL OF CATALYSIS, 2003, 24 (05) : 317 - 318
  • [36] Visible light assisted chemical fixation of atmospheric CO2 into cyclic Carbonates using covalent organic framework as a potential photocatalyst
    Das, Anjan
    Mondal, Ranjan Kumar
    Chakrabortty, Pekham
    Riyajuddin, Sk
    Chowdhury, Arpita Hazra
    Ghosh, Swarbhanu
    Khan, Aslam
    Ghosh, Kaushik
    Islam, Sk Manirul
    MOLECULAR CATALYSIS, 2021, 499 (499):
  • [37] Rapid CO2 coupling to propargylic alcohols: unlocking the production of α-alkylidene cyclic carbonates via continuous flow
    Stiernet, Pierre
    Verdin, Alexandre
    Frisinger, Maja Stina Svanberg
    Grignard, Bruno
    Malherbe, Cedric
    Yuan, Jiayin
    Monbaliu, Jean-Christophe M.
    Detrembleur, Christophe
    GREEN CHEMISTRY, 2025, 27 (03) : 722 - 730
  • [38] Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides
    Rehman, Abdul
    Saleem, Faisal
    Javed, Farhan
    Ikhlaq, Amir
    Ahmad, Syed Waqas
    Harvey, Adam
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (02):
  • [39] Potassium organoaluminate: Synthesis, structure, and catalytic activity for the conversion of CO2 into cyclic carbonates
    Guo, Zhiqiang
    Yan, Leilei
    Liu, Yaoming
    Wu, Xiaoqin
    Wei, Xuehong
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2020, 922
  • [40] Imidazolium-based polymeric ionic liquids for heterogeneous catalytic conversion of CO2 into cyclic carbonates
    Wang, Yinpeng
    Nie, Junqi
    Lu, Cuifen
    Wang, Feiyi
    Ma, Chao
    Chen, Zuxing
    Yang, Guichun
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 292