Cohomogeneity one manifolds with quasipositive curvature

被引:0
|
作者
Wulle, Dennis [1 ]
机构
[1] Univ Munster, Munster, Germany
关键词
Primary; 53C21; Secondary; 57S25; QUASI-POSITIVE CURVATURE; RIEMANNIAN-MANIFOLDS; TRANSFORMATION GROUPS; EVEN DIMENSION; 7-MANIFOLDS; SYMMETRY; EXAMPLES; SPACE;
D O I
10.1007/s00208-023-02766-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a classification of cohomogeneity one manifolds admitting an invariant metric with quasipositive sectional curvature except for two 7-dimensional families. The main result carries over almost verbatim from the classification results in positive curvature carried out by Verdiani and Grove, Wilking and Ziller. Three main tools used in the positively curved case that we generalized to quasipositively curved cohomogeneity one manifolds are Wilking's Chain Theorem, the classification of positively curved fixed point homogeneous manifolds by Grove and Searle and the Rank Lemma.
引用
收藏
页码:303 / 350
页数:48
相关论文
共 50 条
  • [21] Invariant metrics on cohomogeneity one manifolds
    Verdiani, L
    GEOMETRIAE DEDICATA, 1999, 77 (01) : 77 - 111
  • [22] Cohomogeneity one topological manifolds revisited
    Fernando Galaz-García
    Masoumeh Zarei
    Mathematische Zeitschrift, 2018, 288 : 829 - 853
  • [23] SU(3)-manifolds of cohomogeneity one
    Gambioli, Andrea
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (01) : 77 - 100
  • [24] Immersions of cohomogeneity one Riemannian manifolds
    Podesta, F
    MONATSHEFTE FUR MATHEMATIK, 1996, 122 (03): : 215 - 225
  • [25] SMOOTHNESS CONDITIONS IN COHOMOGENEITY ONE MANIFOLDS
    L. VERDIANI
    W. ZILLER
    Transformation Groups, 2022, 27 : 311 - 342
  • [26] GKM actions on cohomogeneity one manifolds
    Goertsches, Oliver
    Loiudice, Eugenia
    Russo, Giovanni
    FORUM MATHEMATICUM, 2023, 35 (02) : 391 - 407
  • [27] Invariant Metrics on Cohomogeneity One Manifolds
    Luigi Verdiani
    Geometriae Dedicata, 1999, 77 : 77 - 110
  • [28] SMOOTHNESS CONDITIONS IN COHOMOGENEITY ONE MANIFOLDS
    Verdiani, L.
    Ziller, W.
    TRANSFORMATION GROUPS, 2022, 27 (01) : 311 - 342
  • [29] On cohomogeneity one flat Riemannian manifolds
    Mirzaie, R
    Kashani, SMB
    GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 185 - 190
  • [30] Cohomogeneity one topological manifolds revisited
    Galaz-Garcia, Fernando
    Zarei, Masoumeh
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 829 - 853