Surrogate modeling of time-domain electromagnetic wave propagation via dynamic mode decomposition and radial basis function

被引:1
|
作者
Li, Kun [1 ]
Li, Yixin [1 ]
Li, Liang [2 ]
Lanteri, Stephane [3 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Math, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[3] Univ Cote Azur, CNRS, Inna, LJAD, Nice, France
基金
中国国家自然科学基金;
关键词
Surrogate modeling; Non-intrusive model order reduction; Proper orthogonal decomposition; Dynamic mode decomposition; Radial basis function; PROPER ORTHOGONAL DECOMPOSITION; REDUCED-ORDER MODEL; NEURAL-NETWORKS;
D O I
10.1016/j.jcp.2023.112354
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work introduces an 'equation-free' non-intrusive model order reduction (NIMOR) method for surrogate modeling of time-domain electromagnetic wave propagation. The nested proper orthogonal decomposition (POD) method, as a prior dimensionality reduction technique, is employed to extract the time-and parameter-independent reduced basis (RB) functions from a collection of high-fidelity (HF) solutions (or snapshots) on a properly chosen training parameter set. A dynamic mode decomposition (DMD) method, resulting in a further dimension reduction of the NIMOR method, is then used to predict the reduced-order coefficient vectors for future time instants on the previous training parameter set. The radial basis function (RBF) is employed for approximating the reduced-order coefficient vectors at a given untrained parameter in the future time instants, leading to the applicability of DMD method to parameterized problems. A main advantage of the proposed method is the use of a multi-step procedure consisting of the POD, DMD and RBF techniques to accurately and quickly recover field solutions from a few large-scale simulations. Numerical experiments for the scattering of a plane wave by a dielectric disk, by a multi-layer disk, and by a 3-D dielectric sphere nicely illustrate the performance of the NIMOR method.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] MODELING OF DYNAMIC CRACK-PROPAGATION USING TIME-DOMAIN BOUNDARY INTEGRAL-EQUATIONS
    KOLLER, MG
    BONNET, M
    MADARIAGA, R
    WAVE MOTION, 1992, 16 (04) : 339 - 366
  • [42] Advances in time domain numerical modeling for electromagnetic wave propagation in bi-isotropic media
    Grande, A
    Cabeceira, ACL
    Barba, I
    Represa, J
    MSMW'04: FIFTH INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER, AND SUBMILLIMETER WAVES, SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2004, : 120 - 121
  • [43] The Optimal Force-Gradient Symplectic Finite-Difference Time-Domain Scheme for Electromagnetic Wave Propagation
    Zhong, Shuangying
    Ran, Chongxi
    Liu, Song
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (12) : 5450 - 5454
  • [44] A Wave-Equation-Based Spatial Finite-Difference Method for Electromagnetic Time-Domain Modeling
    Wu, Yang
    Chen, Zhizhang
    Fan, Wei
    Wang, Junfeng
    Li, Jinyan
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (05): : 794 - 798
  • [45] Development of the integration variable selection method in numerical simulation of electromagnetic wave propagation in the time domain mode
    Klimov, Konstantin N.
    Epaneshnikova, Irina K.
    Belevtsev, Andrey M.
    Konov, Kirill I.
    Serebryannikov, Sergej V.
    Cherkasov, Anatoliy P.
    Serebryannikov, Sergej S.
    Boldyreff, Anton S.
    MILLIMETRE WAVE AND TERAHERTZ SENSORS AND TECHNOLOGY XII, 2019, 11164
  • [46] Pseudospectral time-domain methods for modeling optical wave propagation in second-order nonlinear materials
    Lee, TW
    Hagness, SC
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (02) : 330 - 342
  • [47] Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements
    Hedayatrasa, Saeid
    Tinh Quoc Bui
    Zhang, Chuanzeng
    Lim, Chee Wah
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 : 381 - 404
  • [48] Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation
    Fan, Na
    Zhao, Lian-Feng
    Xie, Xiao-Bi
    Ge, Zengxi
    Yao, Zhen-Xing
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) : 1539 - 1551
  • [49] A time-domain modeling for EM wave propagation in bi-isotropic media based on the TLM method
    Cabeceira, Ana C. L.
    Grande, Ana
    Barba, Ismael
    Represa, Jose
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (06) : 2780 - 2789
  • [50] A Full-Wave Discontinuous Galerkin Time-Domain Finite Element Method for Electromagnetic Field Mode Analysis
    Arab, Homa
    Wang, Desong
    Wu, Ke
    Dufour, Steven
    IEEE ACCESS, 2022, 10 : 125243 - 125253