A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches

被引:111
|
作者
Uddin, Md Galal [1 ,2 ,3 ]
Nash, Stephen [1 ,2 ,3 ]
Rahman, Azizur [4 ,5 ]
Olbert, Agnieszka I. [1 ,2 ,3 ]
机构
[1] Univ Galway, Coll Sci & Engn, Sch Engn, Civil Engn, Galway, Ireland
[2] Univ Galway, Ryan Inst, Galway, Ireland
[3] Univ Galway, MaREI Res Ctr, Galway, Ireland
[4] Charles Sturt Univ, Sch Comp Math & Engn, Wagga Wagga, Australia
[5] Charles Sturt Univ, Gulbali Inst Agr Water & Environm, Wagga Wagga, Australia
关键词
Water quality index; Gaussian processes regression; Monte Carlo simulation; Uncertainty; Cork harbour; RIVERS;
D O I
10.1016/j.watres.2022.119422
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the significant increase in WQI applications worldwide and lack of specific application guidelines, accuracy and reliability of WQI models is a major issue. It has been reported that WQI models produce significant uncertainties during the various stages of their application including: (i) water quality indicator selection, (ii) subindex (SI) calculation, (iii) water quality indicator weighting and (iv) aggregation of sub-indices to calculate the overall index. This research provides a robust statistically sound methodology for assessment of WQI model uncertainties. Eight WQI models are considered. The Monte Carlo simulation (MCS) technique was applied to estimate model uncertainty, while the Gaussian Process Regression (GPR) algorithm was utilised to predict uncertainties in the WQI models at each sampling site. The sub-index functions were found to contribute to considerable uncertainty and hence affect the model reliability - they contributed 12.86% and 10.27% of uncertainty for summer and winter applications, respectively. Therefore, the selection of sub-index function needs to be made with care. A low uncertainty of less than 1% was produced by the water quality indicator selection and weighting processes. Significant statistical differences were found between various aggregation functions. The weighted quadratic mean (WQM) function was found to provide a plausible assessment of water quality of coastal waters at reduced uncertainty levels. The findings of this study also suggest that the unweighted root means squared (RMS) aggregation function could be potentially also used for assessment of coastal water quality. Findings from this research could inform a range of stakeholders including decision-makers, researchers, and agencies responsible for water quality monitoring, assessment and management.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Predicting Employee Attrition Using Machine Learning Approaches
    Raza, Ali
    Munir, Kashif
    Almutairi, Mubarak
    Younas, Faizan
    Fareed, Mian Muhammad Sadiq
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [42] Predicting Location of Tweets Using Machine Learning Approaches
    Alsaqer, Mohammed
    Alelyani, Salem
    Mohana, Mohamed
    Alreemy, Khalid
    Alqahtani, Ali
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [43] A novel machine learning application: Water quality resilience prediction Model
    Imani, Maryam
    Hasan, Md Mahmudul
    Bittencourt, Luiz Fernando
    McClymont, Kent
    Kapelan, Zoran
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 768
  • [44] Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches
    Jang, Eunna
    Im, Jungho
    Ha, Sunghyun
    Lee, Sanggyun
    Park, Young-Gyu
    KOREAN JOURNAL OF REMOTE SENSING, 2016, 32 (03) : 221 - 234
  • [45] Predicting novel microRNA: a comprehensive comparison of machine learning approaches
    Stegmayer, Georgina
    Di Persia, Leandro E.
    Rubiolo, Mariano
    Gerard, Matias
    Pividori, Milton
    Yones, Cristian
    Bugnon, Leandro A.
    Rodriguez, Tadeo
    Raad, Jonathan
    Milone, Diego H.
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (05) : 1607 - 1620
  • [46] Machine learning framework for predicting water quality classification
    Sangwan, Vinita
    Bhardwaj, Rashmi
    WATER PRACTICE AND TECHNOLOGY, 2024, 19 (11) : 4499 - 4521
  • [47] Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change
    Yin, Jina
    Medellin-Azuara, Josue
    Escriva-Bou, Alvar
    Liu, Zhu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 769
  • [48] Predicting Patent Quality Based on Machine Learning Approach
    Erdogan, Zulfiye
    Altuntas, Serkan
    Dereli, Turkay
    IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2024, 71 : 3144 - 3157
  • [49] Predicting a water infrastructure leakage index via machine learning
    Kiziloz, Burak
    Sisman, Eyup
    Oruc, Halil Nurullah
    UTILITIES POLICY, 2022, 75
  • [50] Assessing and predicting water quality index with key water parameters by machine learning models in coastal cities, China
    Xu, Jing
    Mo, Yuming
    Zhu, Senlin
    Wu, Jinran
    Jin, Guangqiu
    Wang, You-Gan
    Ji, Qingfeng
    Li, Ling
    HELIYON, 2024, 10 (13)