Research on CL-20-based aluminized explosives formulation and equipment application shows a critical research avenue. When these explosives are damaged, it affects safety, detonation stability, and reliability, which, in turn, impacts weapon system longevity, safety, and combat effectiveness. However, only some studies have explored the mechanical properties due to their complexity. This paper improves the existing models based on experimental data and a modified genetic algorithm. We obtain a more generalized description of theoretical equations, considering the strain-rate effect, which can better match macro-scale experimental results. Then, we compare laboratory and numerical experiments to investigate the static and dynamic characteristics at the mesoscale. As the theory of sound predicted, the distribution characteristics of stress, plastic strain, and density align with stress wave paths. Notably, local maxima approximately correlate with strain rate and compression effects. Boundary conditions also matter, which researchers should consider during practical engineering verification and application to avoid misleading conclusions.