Tomato Leaf Disease Classification via Compact Convolutional Neural Networks with Transfer Learning and Feature Selection

被引:33
|
作者
Attallah, Omneya [1 ]
机构
[1] Arab Acad Sci Technol & Maritime Transport, Coll Engn & Technol, Dept Elect & Commun Engn, Alexandria 1029, Egypt
关键词
smart agriculture; precision agriculture; deep learning; tomato leaf disease classification; feature selection; transfer learning; DEEP; IMAGES; FUSION;
D O I
10.3390/horticulturae9020149
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Tomatoes are one of the world's greatest valuable vegetables and are regarded as the economic pillar of numerous countries. Nevertheless, these harvests remain susceptible to a variety of illnesses which can reduce and destroy the generation of healthy crops, making early and precise identification of these diseases critical. Therefore, in recent years, numerous studies have utilized deep learning (DL) models for automatic tomato leaf illness identification. However, many of these methods are based on a single DL architecture that needs a high computational ability to update these hyperparameters leading to a rise in the classification complexity. In addition, they extracted large dimensions from these networks which added to the classification complication. Therefore, this study proposes a pipeline for the automatic identification of tomato leaf diseases utilizing three compact convolutional neural networks (CNNs). It employs transfer learning to retrieve deep features out of the final fully connected layer of the CNNs for more condensed and high-level representation. Next, it merges features from the three CNNs to benefit from every CNN structure. Subsequently, it applies a hybrid feature selection approach to select and generate a comprehensive feature set of lower dimensions. Six classifiers are utilized in the tomato leaf illnesses identification procedure. The results indicate that the K-nearest neighbor and support vector machine have attained the highest accuracy of 99.92% and 99.90% using 22 and 24 features only. The experimental results of the proposed pipeline are also compared with previous research studies for tomato leaf diseases classification which verified its competing capacity.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Lung and Colon Cancer Classification Using Multiscale Deep Features Integration of Compact Convolutional Neural Networks and Feature Selection
    Attallah, Omneya
    TECHNOLOGIES, 2025, 13 (02)
  • [32] Deep learning image-based automated application on classification of tomato leaf disease by pre-trained deep convolutional neural networks
    Madupuri, ReddyPriya
    Vemula, Dinesh Reddy
    Chettupally, Anil Carie
    Sangi, Abdur Rashid
    Ravi, Pallam
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (03) : 52 - 58
  • [33] Convolutional Neural Network Optimization for Disease Classification Tomato Plants Through Leaf Image
    Gibran, Muhammad
    Wibowo, Adi
    2021 5TH INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2021), 2021,
  • [34] Using Convolutional Neural Networks and Transfer Learning for Bone Age Classification
    Zhou, Jianlong
    Li, Zelin
    Zhi, Weiming
    Liang, Bin
    Moses, Daniel
    Dawes, Laughlin
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 17 - 22
  • [35] Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images
    Phillip M. Cheng
    Harshawn S. Malhi
    Journal of Digital Imaging, 2017, 30 : 234 - 243
  • [36] CLASSIFICATION OF HAZE IN CITY IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS AND TRANSFER LEARNING
    Isikdag, U.
    Apak, S.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2021, 22 (04): : 1379 - 1385
  • [37] Transfer Learning with Convolutional Neural Networks for Cider Apple Varieties Classification
    Garcia Cortes, Silverio
    Menendez Diaz, Agustin
    Oliveira Prendes, Jose Alberto
    Bello Garcia, Antonio
    AGRONOMY-BASEL, 2022, 12 (11):
  • [38] Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images
    Cheng, Phillip M.
    Malhi, Harshawn S.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (02) : 234 - 243
  • [39] Lesion classification in mammograms using convolutional neural networks and transfer learning
    Perre, Ana C.
    Alexandre, Luis A.
    Freire, Luis C.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2019, 7 (5-6): : 550 - 556
  • [40] Classification and transfer learning of sleep spindles based on convolutional neural networks
    Liang, Jun
    Belkacem, Abdelkader Nasreddine
    Song, Yanxin
    Wang, Jiaxin
    Ai, Zhiguo
    Wang, Xuanqi
    Guo, Jun
    Fan, Lingfeng
    Wang, Changming
    Ji, Bowen
    Wang, Zengguang
    FRONTIERS IN NEUROSCIENCE, 2024, 18