Early Prediction of Student Performance with LSTM-Based Deep Neural Network

被引:0
|
作者
Wan, Han [1 ]
Li, Mengying [1 ]
Zhong, Zihao [1 ]
Luo, Xiaoyan [2 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing, Peoples R China
[2] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Learning analytics; At-risk student prediction; Early prediction; Hill-climbing; Deep learning; ANALYTICS;
D O I
10.1109/COMPSAC57700.2023.00026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The shift to hybrid teaching during the COVID-19 pandemic brought about a real challenge to predict student performance and conduct timely interventions on at-risk students. This study proposed a deep neural network supporting the early prediction of student performance. Bidirectional LSTM, Global Average Pooling, and TIME MASK structure were utilized in the improved GritNet model. Subsequently, this study optimized the hyperparameters with the aid of the hill-climbing algorithm. Finally, on-campus data sets were used in experiments to evaluate the model's performance. Data were collected from a course that carried out multiple iterations from Fall 2021 to Fall 2022. In Fall 2022, the proposed model achieved a ROC-AUC value of 95.47% in the 8th week, while the baseline model only achieved 91.44% in the same week. Besides, the proposed model achieved a ROC-AUC value of 89.67% in the 4th week, which meant it had acceptable prediction performance in the early stage. The experimental findings demonstrated that the model was capable of predicting the academic performance of students in hybrid courses early on.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [31] Student Performance Prediction Using Atom Search Optimization Based Deep Belief Neural Network
    S. Surenthiran
    R. Rajalakshmi
    S. S. Sujatha
    Optical Memory and Neural Networks, 2021, 30 : 157 - 171
  • [32] LSTM-based Deep Learning Model for Stock Prediction and Predictive Optimization Model
    Rather, Akhter Mohiuddin
    EURO JOURNAL ON DECISION PROCESSES, 2021, 9
  • [33] LSTM-Based Deep Learning Methods for Prediction of Earthquakes Using Ionospheric Data
    Abri, Rayan
    Artuner, Harun
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2022, 35 (04): : 1417 - 1431
  • [34] Ventilation prediction for ICU patients with LSTM-based deep relative risk model
    Liu, Bin
    Yin, Guosheng
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 979 - 986
  • [35] OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction
    Enireddy, Vamsidhar
    Karthikeyan, C.
    Babu, D. Vijendra
    SOFT COMPUTING, 2022, 26 (08) : 3825 - 3836
  • [36] OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction
    Vamsidhar Enireddy
    C. Karthikeyan
    D. Vijendra Babu
    Soft Computing, 2022, 26 : 3825 - 3836
  • [37] LSTM-based Deep Neural Network With A Focus on Sentence Representation for Sequential Sentence Classification in Medical Scientific Abstracts
    Lane, Phat
    Pham, Lain
    Nguyen, Tin
    Tang, Hieu
    Seidl, Michael
    Andresel, Medina
    Schindler, Alexander
    2024 19TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS, FEDCSIS 2024, 2024, : 219 - 224
  • [38] An optimized LSTM-based deep learning model for anomaly network intrusion detection
    Dash, Nitu
    Chakravarty, Sujata
    Rath, Amiya Kumar
    Giri, Nimay Chandra
    Aboras, Kareem M.
    Gowtham, N.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [39] Prediction of Customer Purchases Using LSTM Deep Neural Network
    Lutoslawski, Krzysztof
    Hernes, Marcin
    Rot, Artur
    Olejarczyk, Cezary
    EMERGING CHALLENGES IN INTELLIGENT MANAGEMENT INFORMATION SYSTEMS, ECAI 2023-IMIS 2023 WORKSHOP, 2024, 1079 : 166 - 181
  • [40] An Advisor Neural Network framework using LSTM-based Informative Stock Analysis
    Ricchiuti, Fausto
    Sperli, Giancarlo
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259