Clinical approaches for integrating machine learning for patients with lymphoma: Current strategies and future perspectives

被引:3
|
作者
Chihara, Dai [1 ]
Nastoupil, Loretta J. [1 ]
Flowers, Christopher R. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Lymphoma & Myeloma, Houston, TX 77030 USA
关键词
algorithm(s); artificial intelligence; lymphoma; machine learning; neural networks; HEALTH-ORGANIZATION CLASSIFICATION; METABOLIC TUMOR VOLUME; T-CELL LYMPHOMA; ARTIFICIAL-INTELLIGENCE; FOLLICULAR LYMPHOMA; HODGKINS-LYMPHOMA; PROGNOSTIC MODEL; SURVIVAL MODELS; FINAL PATHOLOGY; LINE;
D O I
10.1111/bjh.18861
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) approaches have been applied in the diagnosis and prediction of haematological malignancies. The consideration of ML algorithms to complement or replace current standard of care approaches requires investigation into the methods used to develop relevant algorithms and understanding the accuracy, sensitivity and specificity of such algorithms in the diagnosis and prognosis of malignancies. Here we discuss methods used to develop ML algorithms and review original research studies for assessing the use of ML algorithms in the diagnosis and prognosis of lymphoma.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [21] Radiomics and machine learning applications in rectal cancer: Current update and future perspectives
    Stanzione, Arnaldo
    Verde, Francesco
    Romeo, Valeria
    Boccadifuoco, Francesca
    Mainenti, Pier Paolo
    Maurea, Simone
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (32) : 5306 - 5321
  • [22] Machine learning in TCM with natural products and molecules: current status and future perspectives
    Suya Ma
    Jinlei Liu
    Wenhua Li
    Yongmei Liu
    Xiaoshan Hui
    Peirong Qu
    Zhilin Jiang
    Jun Li
    Jie Wang
    Chinese Medicine, 18
  • [23] Radiomics and machine learning applications in rectal cancer: Current update and future perspectives
    Arnaldo Stanzione
    Francesco Verde
    Valeria Romeo
    Francesca Boccadifuoco
    Pier Paolo Mainenti
    Simone Maurea
    World Journal of Gastroenterology, 2021, (32) : 5306 - 5321
  • [24] Immunotherapy in Glioblastoma: Current Approaches and Future Perspectives
    Sener, Ugur
    Ruff, Michael W.
    Campian, Jian L.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [25] Current approaches and future perspectives for advanced-stage follicular lymphoma with a low tumor burden
    Fukuhara, Noriko
    Ishizawa, Kenichi
    JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2019, 49 (04) : 306 - 310
  • [26] Novel treatment approaches and future perspectives in follicular lymphoma
    Sutamtewagul, Grerk
    Link, Brian K.
    THERAPEUTIC ADVANCES IN HEMATOLOGY, 2019, 10 : 1 - 20
  • [27] Pharmacotherapy of Hodgkin lymphoma: standard approaches and future perspectives
    Eichenauer, Dennis A.
    Boell, Boris
    Diehl, Volker
    EXPERT OPINION ON PHARMACOTHERAPY, 2014, 15 (08) : 1139 - 1151
  • [28] Hodgkin lymphoma: Current and future therapeutic strategies
    Turpin, Anthony
    Michot, Jean-Marie
    Kempf, Emmanuelle
    Mazeron, Renaud
    Dartigues, Peggy
    Terroir, Marie
    Boros, Angela
    Bonnetier, Serge
    Castilla-Llorente, Cristina
    Coman, Tereza
    Danu, Alina
    Ghez, David
    Pilorge, Sylvain
    Arfi-Rouche, Julia
    Dercle, Laurent
    Soria, Jean-Charles
    Carde, Patrice
    Ribrag, Vincent
    Ferme, Christophe
    Lazarovici, Julien
    BULLETIN DU CANCER, 2018, 105 (01) : 81 - 98
  • [29] New Strategies in the Treatment of Ovarian Cancer: Current Clinical Perspectives and Future Potential
    Banerjee, Susana
    Kaye, Stanley B.
    CLINICAL CANCER RESEARCH, 2013, 19 (05) : 961 - 968
  • [30] Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives
    Reis, Felipe J. J.
    Alaiti, Rafael Krasic
    Vallio, Caio Sain
    Hespanhol, Luiz
    BRAZILIAN JOURNAL OF PHYSICAL THERAPY, 2024, 28 (03)