Clinical approaches for integrating machine learning for patients with lymphoma: Current strategies and future perspectives

被引:3
|
作者
Chihara, Dai [1 ]
Nastoupil, Loretta J. [1 ]
Flowers, Christopher R. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Lymphoma & Myeloma, Houston, TX 77030 USA
关键词
algorithm(s); artificial intelligence; lymphoma; machine learning; neural networks; HEALTH-ORGANIZATION CLASSIFICATION; METABOLIC TUMOR VOLUME; T-CELL LYMPHOMA; ARTIFICIAL-INTELLIGENCE; FOLLICULAR LYMPHOMA; HODGKINS-LYMPHOMA; PROGNOSTIC MODEL; SURVIVAL MODELS; FINAL PATHOLOGY; LINE;
D O I
10.1111/bjh.18861
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) approaches have been applied in the diagnosis and prediction of haematological malignancies. The consideration of ML algorithms to complement or replace current standard of care approaches requires investigation into the methods used to develop relevant algorithms and understanding the accuracy, sensitivity and specificity of such algorithms in the diagnosis and prognosis of malignancies. Here we discuss methods used to develop ML algorithms and review original research studies for assessing the use of ML algorithms in the diagnosis and prognosis of lymphoma.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [1] Predicting the quality of air with machine learning approaches: Current research priorities and future perspectives
    Mehmood, Khalid
    Bao, Yansong
    Saifullah, Wei
    Cheng, Wei
    Khan, Muhammad Ajmal
    Siddique, Nadeem
    Abrar, Muhammad Mohsin
    Soban, Ahmad
    Fahad, Shah
    Naidu, Ravi
    JOURNAL OF CLEANER PRODUCTION, 2022, 379
  • [2] Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives
    Washah, Houda N.
    Salifu, Elliasu Y.
    Soremekun, Opeyemi
    Elrashedy, Ahmed A.
    Munsamy, Geraldene
    Olotu, Fisayo A.
    Soliman, Mahmoud E. S.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2020, 23 (08) : 687 - 698
  • [3] Normothermic machine perfusion of kidneys: current strategies and future perspectives
    Messner, Franka
    Bogensperger, Christina
    Hunter, James P.
    Kaths, Moritz J.
    Moers, Cyril
    Weissenbacher, Annemarie
    CURRENT OPINION IN ORGAN TRANSPLANTATION, 2022, 27 (05) : 446 - 453
  • [4] Provision of information to patients on dental implant treatment: Clinicians' perspectives on the current approaches and future strategies
    Kashbour, Wafa A.
    Rousseau, Nikki S.
    Thomason, J. Mark
    Ellis, Janice S.
    JOURNAL OF DENTISTRY, 2018, 76 : 117 - 124
  • [5] Integrating machine learning with agroecosystem modelling: Current state and future challenges
    Aderele, Meshach Ojo
    Srivastava, Amit Kumar
    Butterbach-Bahl, Klaus
    Rahimi, Jaber
    EUROPEAN JOURNAL OF AGRONOMY, 2025, 168
  • [6] Are machine learning approaches the future to study patients with migraine?
    Rocca, Maria A.
    Harrer, Judith U.
    Filippi, Massimo
    NEUROLOGY, 2020, 94 (07) : 291 - 292
  • [7] Brain tumor segmentation with deep learning: Current approaches and future perspectives
    Verma, Akash
    Yadav, Arun Kumar
    JOURNAL OF NEUROSCIENCE METHODS, 2025, 418
  • [8] Application of machine learning in the management of lymphoma: Current practice and future prospects
    Yuan, Junyun
    Zhang, Ya
    Wang, Xin
    DIGITAL HEALTH, 2024, 10
  • [9] Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies
    Neves, Lisete S.
    Rodrigues, Marcia T.
    Reis, Rui L.
    Gomes, Manuela E.
    EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT, 2016, 1 (01): : 93 - 108
  • [10] Current strategies and future perspectives in fertility preservation for cancer patients
    Micu, Romeo
    Petrut, Bogdan
    Zlatescu-Marton, Cristina
    Traila, Alexandra
    Harsa, Radu
    Achimas-Cadariu, Patriciu
    JOURNAL OF BUON, 2017, 22 (04): : 844 - 852