State of Charge Estimation for Lithium-Ion Battery Based on Hybrid Compensation Modeling and Adaptive H-Infinity Filter

被引:20
|
作者
Shu, Xing [1 ]
Chen, Zheng [1 ]
Shen, Jiangwei [1 ]
Guo, Fengxiang [1 ]
Zhang, Yuanjian [2 ]
Liu, Yonggang [3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
[2] Loughborough Univ, Dept Aeronaut & Automot Engn, Loughborough LE11 3TU, England
[3] Chongqing Univ, Coll Mech & Vehicle Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
State of charge; Estimation; Load modeling; Temperature measurement; Adaptation models; Mathematical models; Computational modeling; Adaptive H-infinity filter (AHIF); capacity compensation model; lithium-ion battery; random forest (RF); state of charge (SOC); EQUIVALENT-CIRCUIT MODELS; PARAMETER-IDENTIFICATION; OBSERVER DESIGN; KALMAN FILTER;
D O I
10.1109/TTE.2022.3180077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate estimation of state of charge (SOC) is crucial for operation performance promotion of lithium-ion batteries. However, the variations of temperature and loading current directly impact the estimation accuracy of SOC. To fully account for these influences, this study proposes a hybrid compensation model and exploits an advanced algorithm for high-performance SOC estimation. First, a fractional-order model (FOM) is constructed to delineate the electrochemical behaviors of batteries with higher accuracy, compared with traditional integral-order model (IOM). Then, the relationship among discharge rate, temperature, and available capacity is explored, and a capacity compensation model is established via the random forest (RF) algorithm. Based on the trustworthy parameter identification and capacity recognition, the SOC is estimated by the adaptive H-infinity filter (AHIF) to fully cope with the model and operation condition variations raised by different temperatures and loading currents. By this manner, the presented method enhances the robustness to parameter uncertainty and modeling errors and promotes the estimation accuracy of SOC in wide temperature range. The experimental results highlight that compared with the traditional IOM and adaptive extended Kalman filter (AEKF), the proposed method can highly boost the temperature adaptability, convergence speed, and estimation accuracy of SOC.
引用
收藏
页码:945 / 957
页数:13
相关论文
共 50 条
  • [21] Joint Estimation of SOC and SOH for Lithium-Ion Batteries Based on Dual Adaptive Central Difference H-Infinity Filter
    Sang, Bingyu
    Wu, Zaijun
    Yang, Bo
    Wei, Junjie
    Wan, Youhong
    ENERGIES, 2024, 17 (07)
  • [22] A method for state of charge and state of health estimation of lithium-ion battery based on adaptive unscented Kalman filter
    Liu, Shulin
    Dong, Xia
    Yu, Xiaodong
    Ren, Xiaoqing
    Zhang, Jinfeng
    Zhu, Rui
    ENERGY REPORTS, 2022, 8 : 426 - 436
  • [23] Sliding mode-based H-infinity filter for SOC estimation of lithium-ion batteries
    Jianxin Yao
    Jie Ding
    Yanyun Cheng
    Liang Feng
    Ionics, 2021, 27 : 5147 - 5157
  • [24] State of Charge Estimation for Li-Ion Batteries Based on an Unscented H-Infinity Filter
    Liu, Yuanyuan
    Cai, Tiantian
    Liu, Jingbiao
    Gao, Mingyu
    He, Zhiwei
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (06) : 2529 - 2538
  • [25] State of Charge Estimation for Li-Ion Batteries Based on an Unscented H-Infinity Filter
    Yuanyuan Liu
    Tiantian Cai
    Jingbiao Liu
    Mingyu Gao
    Zhiwei He
    Journal of Electrical Engineering & Technology, 2020, 15 : 2529 - 2538
  • [26] Research on Modeling and State of Charge Estimation for Lithium-ion Battery
    Sun, Dong
    Chen, Xikun
    Ruan, Yi
    2014 INTERNATIONAL ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2014, : 1401 - 1406
  • [27] A Multi-Timescale Estimator for Lithium-Ion Battery state of Charge and State of Energy Estimation Using Dual H infinity Filter
    Xu, Wei
    Xu, Jinli
    Lang, Jinfeng
    Yan, Xiaofeng
    IEEE ACCESS, 2019, 7 : 181229 - 181241
  • [28] An improved H-infinity filter for SOC estimation of lithium-ion batteries based on fractional order model
    Tu, Taotao
    Ding, Jie
    Yuan, Tingting
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1390 - 1395
  • [29] State-Of-Charge and Parameter Estimation of Lithium-Ion Battery Using Dual Adaptive Filter
    Takegami, Tomoki
    Wada, Toshihiro
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1332 - 1337
  • [30] A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation
    Wang, Dongqing
    Yang, Yan
    Gu, Tianyu
    JOURNAL OF ENERGY STORAGE, 2023, 62