Quasilinear Schrodinger equations with concave and convex nonlinearities

被引:3
|
作者
Liu, Shibo [1 ]
Yin, Li-Feng [2 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
ELLIPTIC EQUATION; SOLITON-SOLUTIONS; INDEFINITE; EXISTENCE;
D O I
10.1007/s00526-023-02434-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following quasilinear Schrodinger equation -delta u - u delta(u(2)) = k(x) |u|(q-2) u - h(x) |u|(s-2) u, u is an element of D-1,D-2(R-N),where 1 < q < 2 < s < infinity. Unlike most results in the literature, the exponent s here is allowed to be supercritical s > 2 middot 2*. By taking advantage of geometric properties of a nonlinear transformation f and a variant of Clark's theorem, we get a sequence of solutions with negative energy in a space smaller than D-1,D-2(R-N). Nonnegative solution at negative energy level is also obtained.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] QUASILINEAR PROBLEMS WITH THE COMPETITION BETWEEN CONVEX AND CONCAVE NONLINEARITIES AND VARIABLE POTENTIALS
    Covei, Dragos-Patru
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (01)
  • [22] Critical quasilinear elliptic problems using concave-convex nonlinearities
    da Silva, E. D.
    Carvalho, M. L. M.
    Goncalves, J. V.
    Goulart, C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) : 693 - 726
  • [23] On semilinear elliptic equations involving concave and convex nonlinearities
    Chabrowski, J
    Bezzera, JM
    MATHEMATISCHE NACHRICHTEN, 2002, 233 : 55 - 76
  • [24] (p, q)-Equations with Singular and Concave Convex Nonlinearities
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2601 - 2628
  • [25] (p, q)-Equations with Singular and Concave Convex Nonlinearities
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Applied Mathematics & Optimization, 2021, 84 : 2601 - 2628
  • [26] On semilinear elliptic equations with concave and convex nonlinearities in RN
    Yang, HT
    Chen, ZC
    ACTA MATHEMATICA SCIENTIA, 2000, 20 (02) : 181 - 188
  • [27] Multiple Solutions for Schrodinger Equations Involving Concave-Convex Nonlinearities Without (AR)-Type Condition
    Zheng, Qin
    Wu, Dong-Lun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 2943 - 2956
  • [28] Multiple solutions for a generalised Schrodinger problem with "concave-convex" nonlinearities
    Santos, Andrelino V.
    Santos Junior, Joao R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [29] Fractional Schrodinger-Poisson system involving concave and convex nonlinearities
    Luo, Jiao
    Yang, Zhipeng
    Zeng, Anbiao
    Zhu, Ling
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2025, 44 (1-2): : 235 - 250
  • [30] Multiplicity of positive solutions for a critical quasilinear elliptic system with concave and convex nonlinearities
    Benmouloud, Samira
    Echarghaoui, Rachid
    Sbai, Si Mohammed
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 375 - 385