Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation
被引:6
|
作者:
Ji, Hong Kang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Civil Engn, Fac Engn, Kuala Lumpur, MalaysiaUniv Malaya, Dept Civil Engn, Fac Engn, Kuala Lumpur, Malaysia
Ji, Hong Kang
[1
]
Mirzaei, Majid
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USAUniv Malaya, Dept Civil Engn, Fac Engn, Kuala Lumpur, Malaysia
Mirzaei, Majid
[2
]
Lai, Sai Hin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sarawak, Fac Engn, Dept Civil Engn, Kota Samarahan 94300, Sarawak, Malaysia
Univ Malaysia Sarawak, Fac Engn, UNIMAS Water Ctr UWC, Kota Samarahan 94300, Sarawak, MalaysiaUniv Malaya, Dept Civil Engn, Fac Engn, Kuala Lumpur, Malaysia
Lai, Sai Hin
[3
,5
]
Dehghani, Adnan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Fac Engn, Dept Mech & Mfg Engn, Serdang, Selangor, MalaysiaUniv Malaya, Dept Civil Engn, Fac Engn, Kuala Lumpur, Malaysia
Dehghani, Adnan
[6
]
Dehghani, Amin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran, Coll Engn, Sch Environm, Tehran, IranUniv Malaya, Dept Civil Engn, Fac Engn, Kuala Lumpur, Malaysia
Dehghani, Amin
[4
]
机构:
[1] Univ Malaya, Dept Civil Engn, Fac Engn, Kuala Lumpur, Malaysia
[2] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA
[3] Univ Malaysia Sarawak, Fac Engn, Dept Civil Engn, Kota Samarahan 94300, Sarawak, Malaysia
Generative adversarial network;
Flood frequency;
SWAT;
Complex data distribution;
Deep learning;
UNCERTAINTY ESTIMATION;
CONTINUOUS SIMULATION;
MODEL CALIBRATION;
CLIMATE;
RAINFALL;
RISK;
VARIABILITY;
STATISTICS;
CATCHMENT;
RUNOFF;
D O I:
10.1016/j.envsoft.2023.105896
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Precipitation is a key driving factor of hydrologic modeling for impact studies. However, there are challenges due to limited long-term data availability and complex parameterizations of existing stochastic weather generators (SWGs) due to spatiotemporal uncertainty. We introduced state-of-the-art Generative Adversarial Network (GAN) as a data-driven multi-site SWG and synthesized extensive hourly precipitation over 30 years at 14 stations. These samples were then fed into an hourly-calibrated SWAT model for streamflow generation. Results showed that the well-trained GAN improved rainfall data by accurately representing spatiotemporal distribution of raw data rather than simply replicating its statistical characteristics. GAN also helped display authentic spatial correlation patterns of extreme rainfall events well. We concluded that GAN offers a superior spatiotemporal distribution of raw data compared to conventional methods, thus enhancing the reliability of flood frequency evaluations.
机构:
Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China
Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518005, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China
Wang, Jiguang
Zhang, Yilun
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Dept Ind Engn & Management, Shanghai, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China
Zhang, Yilun
Xing, Xinjie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Liverpool, Management Sch, Liverpool, Merseyside, EnglandTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China
Xing, Xinjie
Zhan, Yuanzhu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Birmingham, Birmingham Business Sch, Birmingham, W Midlands, EnglandTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China
Zhan, Yuanzhu
Chan, Wai Kin Victor
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China
Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518005, Peoples R ChinaTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China
Chan, Wai Kin Victor
Tiwari, Sunil
论文数: 0引用数: 0
h-index: 0
机构:
ESSCA Sch Management, Operat Management & Decis Sci Dept, 4 Pont Pasteur, F-69007 Lyon, FranceTsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518005, Peoples R China