Advancing Electrochemical Screening of Neurotransmitters Using a Customizable Machine Learning-Based Multimodal System

被引:3
|
作者
Kammarchedu, Vinay [1 ,2 ,3 ,4 ]
Ebrahimi, Aida [1 ,2 ,3 ,4 ,5 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr Biodevices, University Pk, PA 16802 USA
[4] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
关键词
Sensors; Multiplexing; Throughput; Liquids; Graphene; Electrodes; Sensor phenomena and characterization; Chemical and biological sensors; electrochemical sensors; automated; machine learning; multimodal; multiplexed; HIGH-THROUGHPUT; SENSOR ARRAYS; ELECTRODE;
D O I
10.1109/LSENS.2023.3247002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High throughput and automated optical readout systems are already an industry standard in life sciences for screening several reactions at once. However, such high throughput systems are in an inceptive stage for studying electrochemical interactions. This limitation, for example, slows down the process of establishing property-performance relation of novel materials for biochemical sensing. Herein, building on our prior work, we fabricate a low-cost customizable platform to screen response of acetic acid-treated laser induced graphene to identify and quantify four biogenic amine neurotransmitters in artificial saliva, namely dopamine, serotonin, epinephrine, and norepinephrine, which due to similar molecular structures are difficult to differentiate using conventional electrochemical methods. Our analytical platform analyzes multiple sensors at once and processes the data using machine learning to rapidly screen the material-molecule interactions by combining several electrochemical spectral components (fingerprints). Combining multiple spectral features, both within one electrochemical module and across different modules, significantly improves the sensor performance and allows identification of the biomolecules using the same material system. The proposed automated electroanalytical system can be used to screen material-molecule interactions as well as high throughput point-of-care testing for rapid, multiplexed, and low-cost molecular detection.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Machine learning-based screening for biomarkers of psoriasis and immune cell infiltration
    Yang Zhou
    Ziting Wang
    Lu Han
    Yixuan Yu
    Ning Guan
    Runan Fang
    Yue Wan
    Zeyu Yang
    Jianhong Li
    European Journal of Dermatology, 2023, 33 : 147 - 156
  • [42] Machine learning-based screening for biomarkers of psoriasis and immune cell infiltration
    Zhou, Yang
    Wang, Ziting
    Han, Lu
    Yu, Yixuan
    Guan, Ning
    Fang, Runan
    Wan, Yue
    Yang, Zeyu
    Li, Jianhong
    EUROPEAN JOURNAL OF DERMATOLOGY, 2023, 33 (02) : 147 - 156
  • [43] A Machine Learning-Based AI Framework to Optimize the Recruitment Screening Process
    Anshul Ujlayan
    Sanjay Bhattacharya
    International Journal of Global Business and Competitiveness, 2023, 18 (Suppl 1) : 38 - 53
  • [44] A Machine Learning-Based Recommender System for Improving Students Learning Experiences
    Yanes, Nacim
    Mostafa, Ayman Mohamed
    Ezz, Mohamed
    Almuayqil, Saleh Naif
    IEEE ACCESS, 2020, 8 (08): : 201218 - 201235
  • [45] Machine Learning-Based Detection of Ransomware Using SDN
    Cusack, Greg
    Michel, Oliver
    Keller, Eric
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL WORKSHOP ON SECURITY IN SOFTWARE DEFINED NETWORKS & NETWORK FUNCTION VIRTUALIZATION (SDN-NFVSEC'18), 2018, : 1 - 6
  • [46] Advancing Hemoglobinopathy Screening with Raman Spectroscopy and Machine Learning
    Abbasi, Sara
    Feizpour, Mehdi
    Weets, Ilse
    Liu, Qing
    Thienpont, Hugo
    Ferranti, Francesco
    Ottevaere, Heidi
    BIOMEDICAL SPECTROSCOPY, MICROSCOPY, AND IMAGING III, 2024, 13006
  • [47] A Multimodal Deep Learning-Based Distributed Network Latency Measurement System
    Mohammed, Shady A.
    Shirmohammadi, Shervin
    Altamimi, Sa'di
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (05) : 2487 - 2494
  • [48] Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features
    Hannes Almgren
    Milton Camacho
    Alexandru Hanganu
    Mekale Kibreab
    Richard Camicioli
    Zahinoor Ismail
    Nils D. Forkert
    Oury Monchi
    Scientific Reports, 13
  • [49] Machine learning-based prediction of longitudinal cognitive decline in early Parkinson's disease using multimodal features
    Almgren, Hannes
    Camacho, Milton
    Hanganu, Alexandru
    Kibreab, Mekale
    Camicioli, Richard
    Ismail, Zahinoor
    Forkert, Nils D.
    Monchi, Oury
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] A learning-based thresholding method customizable to computer vision applications
    Martinez-de Dios, J. R.
    Ollero, A.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 37 : 71 - 90