Magnetic and optical characterizations of Dy-Eu co-substituted Mn0.5Zn0.5Fe2O4 nanospinel ferrites

被引:2
|
作者
Sertkol, M. [1 ]
Slimani, Y. [2 ]
Almessiere, M. A. [2 ,3 ]
Baykal, A. [4 ]
Akhtar, S. [2 ]
Polat, E. G. [5 ]
Caliskan, S. [6 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Basic Sci, Deanship Preparatory Year & Supporting Studies, POB 1982, Dammam 31441, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat IRMC, Dept Biophys, POB 1982, Dammam 31441, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Phys, POB 1982, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat IRMC, Dept Nanomed Res, POB 1982, Dammam 31441, Saudi Arabia
[5] Univ Minnesota, Dept Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[6] Univ Houston Clear Lake, Dept Phys & Appl Sci, Houston, TX 77058 USA
关键词
Magnetic properties; Spinel ferrite; Rare earth substitution; Optic features; MN-ZN FERRITE; ELECTRONIC-STRUCTURE; SOL-GEL; PARTICLES; BEHAVIOR;
D O I
10.1016/j.molstruc.2022.134891
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, Mn0.5Zn0.5DyxEuxFe2-2xO4 (x <= 0.1) nanospinel ferrites (DyEu -> MnZn (x <= 0.1) NSFs) were synthesized via ultrasonication method. The microstructure of samples was characterized by XRD, which confirmed the cubic spinel phase without any impurity and the nanostructure of all samples. TEM and SEM also proved the samples' morphology and chemical composition along with EDX. Diffuse reflectance (DR) spectra investigations were performed on samples. Direct optical energy band gaps (Eg) were studied by using the Tauc approximation and were found between 2.44 and 2.56 eV. The impact of Eu3 +-Dy3+ ions inclusion on the magnetic properties of DyEu -> MnZn (x <= 0.1) NSFs was also investigated. The magnetic M-H hysteresis loops showed non-hysteretic behavior at 300 K , suggesting the superparamagnetic (SPM) behavior. In contrast, finite values of coercivity and remanence are observed at lower temperatures (T) (10 K) , revealing the transition to ferromagnetic (FM) behavior at low Ts. As the concentration of Eu3+-Dy3+ ions increases, it is noticed that the saturation magnetization (Ms) decreases, whereas the coercivity (Hc) in-creases. The curves of T-dependent magnetization M(T) under FC and ZFC modes confirmed the SPM-FM phase transition with decreasing the T. It is found that the blocking temperature (TB) is slightly decreas-ing with increasing the Eu3+-Dy3+ ions content. All samples displayed spin-glass-like behavior at low Ts, which indicates strong interactions among the magnetic moments.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Structural, electrical and magnetic properties of Mg-Zr co-substituted Ni0.5Zn0.5Fe2O4
    Jalaiah, K.
    Mouli, K. Chandra
    Babu, K. Vijaya
    Krishnaiah, R., V
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2019, 4 (02): : 310 - 318
  • [32] Investigation of Superparamagnetism in Microwave and Conventional Processed Mn0.5Zn0.5Fe2O4 Nanoparticles
    Gurram, Narayana Rao
    Ramesh, T.
    Suneetha, T.
    Nath, T. K.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (03) : 815 - 820
  • [33] Hyperthermic response optimization for Mn0.5Zn0.5Fe2O4 magnetic fluid for its application in magnetic fluid hyperthermia
    Patel, Hima
    Parekh, Kinnari
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 615
  • [34] Investigation of Superparamagnetism in Microwave and Conventional Processed Mn0.5Zn0.5Fe2O4 Nanoparticles
    Narayana Rao Gurram
    Ramesh T.
    Suneetha T.
    T. K. Nath
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 815 - 820
  • [35] Hollow spherical Mn0.5Zn0.5Fe2O4 nanoparticles with a magnetic vortex configuration for enhanced magnetic hyperthermia efficacy
    Shen, Kaiming
    Li, Lixian
    Tan, Funan
    Wu, Shuo
    Jin, Tianli
    You, Jingxiang
    Chee, Mun Yin
    Yan, Yunfei
    Lew, Wen Siang
    NANOSCALE, 2023, 15 (44) : 17946 - 17955
  • [36] Effect of Synthesis Temperature and NaOH Concentration on Microstructural and Magnetic Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles
    Siregar, N.
    Indrayana, I. P. T.
    Suharyadi, E.
    Kato, T.
    Iwata, S.
    4TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS SCIENCE AND TECHNOLOGY, 2016, 2017, 202
  • [37] Preparation and Characterization of Mn0.5Zn0.5Fe2(PhAc)3(N2H4)2: A New Precursor to Mn0.5Zn0.5Fe2O4 Nanoparticles
    Rangansamy, Sinduja
    Kalimuthu, Kalpanadevi
    Rakkiyasamy, Manimekalai
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2015, 45 (04) : 482 - 486
  • [38] Dose dependent modifications in structural and magnetic properties of γ-irradiated nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics
    Angadi, V. Jagadeesha
    Anupama, A. V.
    Kumar, R.
    Somashekarappa, H. M.
    Matteppanavar, S.
    Rudraswamy, B.
    Sahoo, B.
    CERAMICS INTERNATIONAL, 2017, 43 (01) : 523 - 526
  • [39] The calcination temperature dependence of microstructural, vibrational spectra and magnetic properties of nanocrystalline Mn0.5Zn0.5Fe2O4
    Indrayana, I. P. T.
    Siregar, N.
    Suharyadi, E.
    Kato, T.
    Iwata, S.
    8TH INTERNATIONAL CONFERENCE ON PHYSICS AND ITS APPLICATIONS (ICOPIA), 2016, 776
  • [40] Size-dependent magnetic properties of Mn0.5Zn0.5Fe2O4 nanoparticles in SiO2 matrix
    Mandal, K
    Chakraverty, S
    Pan Mandal, S
    Agudo, P
    Pal, M
    Chakravorty, D
    JOURNAL OF APPLIED PHYSICS, 2002, 92 (01) : 501 - 505