Frequency specific denoising for myocardial perfusion SPECT using deep learning

被引:0
|
作者
Du, Yu [1 ]
Sun, Jingzhang [1 ]
Li, Chien-Ying [2 ]
Wu, Tung-Hsin [3 ]
Yang, Bang-Hung [2 ]
Mok, Greta [1 ]
机构
[1] Univ Macau, Taipa, Peoples R China
[2] Natl Yang Ming Chiao Tung Univ, Taipei Vet Gen Hosp, Hsinchu, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Hsinchu, Taiwan
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
P831
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Deep learning-based multi-frequency denoising for myocardial perfusion SPECT
    Du, Yu
    Sun, Jingzhang
    Li, Chien-Ying
    Yang, Bang-Hung
    Wu, Tung-Hsin
    Mok, Greta S. P.
    EJNMMI PHYSICS, 2024, 11 (01):
  • [2] DEMIST: A Deep-Learning-Based Detection-Task-Specific Denoising Approach for Myocardial Perfusion SPECT
    Rahman, Md Ashequr
    Yu, Zitong
    Laforest, Richard
    Abbey, Craig K.
    Siegel, Barry A.
    Jha, Abhinav K.
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (04) : 439 - 450
  • [3] Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging
    Liu, Junchi
    Yang, Yongyi
    Wernick, Miles N.
    Pretorius, P. Hendrik
    King, Michael A.
    MEDICAL PHYSICS, 2021, 48 (01) : 156 - 168
  • [4] One-size-fits-all Deep Learning Model for Fast Myocardial Perfusion SPECT Denoising
    Sun, Jingzhang
    Li, Chien-Ying
    Wu, Tung-Hsin
    Yang, Bang-Hung
    Mok, Greta Seng Peng
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [5] TB-GAN: A new developed Deep Learning Framework for SPECT Myocardial Perfusion Image Denoising
    Entezarmahdi, S.
    Karimi, A.
    Faghihi, R.
    Ghasempoor, S.
    Ghaedian, T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S770 - S770
  • [6] Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising
    Junchi Liu
    Yongyi Yang
    Miles N. Wernick
    P. Hendrik Pretorius
    Piotr J. Slomka
    Michael A. King
    Journal of Nuclear Cardiology, 2022, 29 : 2340 - 2349
  • [7] Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising
    Liu, Junchi
    Yang, Yongyi
    Wernick, Miles N.
    Pretorius, P. Hendrik
    Slomka, Piotr J.
    King, Michael A.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2022, 29 (05) : 2340 - 2349
  • [8] Deep learning for myocardial ischemia auxiliary diagnosis using CZT SPECT myocardial perfusion imaging
    Su, Ting-Yi
    Chen, Jui-Jen
    Chen, Wei-Shiang
    Chang, Yen-Hsiang
    Lu, Henry Horng-Shing
    JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2023, 86 (01) : 122 - 130
  • [9] Deep learning–based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance
    Narges Aghakhan Olia
    Alireza Kamali-Asl
    Sanaz Hariri Tabrizi
    Parham Geramifar
    Peyman Sheikhzadeh
    Saeed Farzanefar
    Hossein Arabi
    Habib Zaidi
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 1508 - 1522
  • [10] Deep Learning Denoising for Myocardial Perfusion CT with a Residual Dense Network
    Vannier, Michael
    Wang, Ge
    RADIOLOGY, 2022, 305 (01) : 91 - 92