IS-GGT: Iterative Scene Graph Generation with Generative Transformers

被引:6
|
作者
Kundu, Sanjoy [1 ]
Aakur, Sathyanarayanan N. [1 ]
机构
[1] Oklahoma State Univ, Dept Comp Sci, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR52729.2023.00609
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graphs provide a rich, structured representation of a scene by encoding the entities (objects) and their spatial relationships in a graphical format. This representation has proven useful in several tasks, such as question answering, captioning, and even object detection, to name a few. Current approaches take a generation-by-classification approach where the scene graph is generated through labeling of all possible edges between objects in a scene, which adds computational overhead to the approach. This work introduces a generative transformer-based approach to generating scene graphs beyond link prediction. Using two transformer-based components, we first sample a possible scene graph structure from detected objects and their visual features. We then perform predicate classification on the sampled edges to generate the final scene graph. This approach allows us to efficiently generate scene graphs from images with minimal inference overhead. Extensive experiments on the Visual Genome dataset demonstrate the efficiency of the proposed approach. Without bells and whistles, we obtain, on average, 20.7% mean recall (mR@100) across different settings for scene graph generation (SGG), outperforming state-of-the-art SGG approaches while offering competitive performance to unbiased SGG approaches.
引用
收藏
页码:6292 / 6301
页数:10
相关论文
共 50 条
  • [31] Dynamic Gated Graph Neural Networks for Scene Graph Generation
    Khademi, Mahmoud
    Schulte, Oliver
    COMPUTER VISION - ACCV 2018, PT VI, 2019, 11366 : 669 - 685
  • [32] Atom correlation based graph propagation for scene graph generation
    Lin, Bingqian
    Zhu, Yi
    Liang, Xiaodan
    PATTERN RECOGNITION, 2022, 122
  • [33] RelTR: Relation Transformer for Scene Graph Generation
    Cong, Yuren
    Yang, Michael Ying
    Rosenhahn, Bodo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11169 - 11183
  • [34] Boosting Scene Graph Generation with Contextual Information
    Sun, Shiqi
    Huang, Danlan
    Tao, Xiaoming
    Pan, Chengkang
    Liu, Guangyi
    Chen, Changwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (02)
  • [35] CONTEXTUAL LABEL TRANSFORMATION FOR SCENE GRAPH GENERATION
    Lee, Wonhee
    Kim, Sungeun
    Kim, Gunhee
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2533 - 2537
  • [36] Uncertainty-Aware Scene Graph Generation
    Li, Xuewei
    Wu, Tao
    Zheng, Guangcong
    Yu, Yunlong
    Li, Xi
    PATTERN RECOGNITION LETTERS, 2023, 167 : 30 - 37
  • [37] One-shot Scene Graph Generation
    Guo, Yuyu
    Song, Jingkuan
    Gao, Lianli
    Shen, Heng Tao
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3090 - 3098
  • [38] Segmentation-grounded Scene Graph Generation
    Khandelwal, Siddhesh
    Suhail, Mohammed
    Sigal, Leonid
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15859 - 15869
  • [39] Visual Distant Supervision for Scene Graph Generation
    Yao, Yuan
    Zhang, Ao
    Han, Xu
    Li, Mengdi
    Weber, Cornelius
    Liu, Zhiyuan
    Wermter, Stefan
    Sun, Maosong
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15796 - 15806
  • [40] Predicate Correlation Learning for Scene Graph Generation
    Tao, Leitian
    Mi, Li
    Li, Nannan
    Cheng, Xianhang
    Hu, Yaosi
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4173 - 4185