Classes of Harmonic Functions Related to Mittag-Leffler Function

被引:2
|
作者
Al-Dohiman, Abeer A. [1 ]
Frasin, Basem Aref [2 ]
Tasar, Naci [3 ]
Sakar, Fethiye Muge [3 ]
机构
[1] Jouf Univ, Fac Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[2] Al al Bayt Univ, Fac Sci, Dept Math, Mafraq 25113, Jordan
[3] Dicle Univ, Fac Econ & Adm Sci, Dept Management, TR-21280 Diyarbakir, Turkiye
关键词
harmonic; univalent functions; harmonic starlike; harmonic convex; Mittag-Leffler function; HYPERGEOMETRIC-FUNCTIONS; UNIVALENT-FUNCTIONS; STARLIKE; SUBCLASSES; CONNECTIONS; CONVEX;
D O I
10.3390/axioms12070714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to find new inclusion relations of the harmonic class HF((sic),?) with the subclasses S-HF*,K-HF and T-HF(N)(t) of harmonic functions by applying the convolution operator T(I) associated with the Mittag-Leffler function. Further for (sic) = 0, several special cases of the main results are also obtained.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A comprehensive class of starlike functions involving Mittag-Leffler function
    Karthikeyan, Kadhavoor R.
    Mohankumar, Dharmaraj
    Breaz, Daniel
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):
  • [32] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [33] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [34] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [35] Comments on the properties of Mittag-Leffler function
    Dattoli, G.
    Gorska, K.
    Horzela, A.
    Licciardi, S.
    Pidatella, R. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3427 - 3443
  • [36] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58
  • [37] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [38] On Generalized Matrix Mittag-Leffler Function
    Batiha, Iqbal M.
    Jebril, Iqbal H.
    Alshorm, Shameseddin
    Anakira, Nidal
    Alkhazaleh, Shawkat
    IAENG International Journal of Applied Mathematics, 2024, 54 (03) : 576 - 580
  • [39] Certain Quantum Operator Related to Generalized Mittag-Leffler Function
    Yassen, Mansour F.
    Attiya, Adel A.
    MATHEMATICS, 2023, 11 (24)
  • [40] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395