Pyrenoid: Organelle with efficient CO2-Concentrating mechanism in algae

被引:6
|
作者
An, Yaqi [1 ,2 ,3 ]
Wang, Dong [1 ,2 ,3 ]
Du, Jingxia [1 ,2 ,3 ]
Wang, Xinwei [4 ]
Xiao, Jianwei [1 ,2 ,3 ]
机构
[1] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Natl Engn Lab Tree Breeding, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Minist Educ, Key Lab Genet & Breeding Forest Trees & Ornamental, Beijing 100083, Peoples R China
[4] Hebei North Univ, Coll Agr & Forestry, Zhangjiakou, Peoples R China
关键词
Pyrenoid; Chlamydomonas reinhardtii; CCM; Photosynthesis; CARBON-CONCENTRATING MECHANISM; CHLAMYDOMONAS-REINHARDTII; INCREASE PHOTOSYNTHESIS; CO2; CONCENTRATION; STARCH SHEATH; LIMITING CO2; RUBISCO; PROTEIN; LCIB; LOCALIZATION;
D O I
10.1016/j.jplph.2023.154044
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The carbon dioxide emitted by human accounts for only a small fraction of global photosynthesis consumption, half of which is due to microalgae. The high efficiency of algae photosynthesis is attributed to the pyrenoid-based CO2-concentrating mechanism (CCM). The formation of pyrenoid which has a variety of Rubisco-binding proteins mainly depends on liquid-liquid phase separation (LLPS) of Rubisco, a CO2 fixing enzyme. At present, our understanding of pyrenoid at the molecular level mainly stems from studies of the model algae Chlamydomonas reinhardtii. In this article, we summarize the current research on the structure, assembly and application of Chlamydomonas reinhardtii pyrenoids, providing new ideas for improving crop photosynthetic performance and yield.
引用
收藏
页数:9
相关论文
共 50 条