A Note on the Weighted Yamabe Flow

被引:1
|
作者
Popelensky, Theodore Yu. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow Ctr Fundamental & Appl Math, Leninskie Gory 1, Moscow 119991, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2023年 / 28卷 / 03期
基金
俄罗斯科学基金会;
关键词
combinatorial Yamabe flow; combinatorial Ricci flow; weighted flow; COMBINATORIAL RICCI FLOW;
D O I
10.1134/S1560354723030048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two dimensional surfaces (smooth) Ricci and Yamabe flows are equivalent.In 2003, Chow and Luo developed the theory of combinatorial Ricci flow for circle packing metrics on closed triangulated surfaces.In 2004, Luo developed a theory of discrete Yamabe flow for closed triangulated surfaces.He investigated the formation of singularities and convergence to a metric of constant curvature.In this note we develop the theory of a naive discrete Ricci flow and its modification - the so-called weighted Ricci flow. We prove that this flow has a rich family of first integrals and is equivalent to a certain modification of Luo's discrete Yamabe flow.We investigate the types of singularities of solutions for these flows and discuss convergence to a metric of weightedconstant curvature.
引用
收藏
页码:309 / 320
页数:12
相关论文
共 50 条
  • [21] CONVERGENCE OF THE YAMABE FLOW ON SINGULAR SPACES WITH POSITIVE YAMABE CONSTANT
    Carron, Gilles
    Lye, Jorgen Olsen
    Vertman, Boris
    TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (04) : 561 - 615
  • [22] The Yamabe flow on asymptotically Euclidean manifolds with nonpositive Yamabe constant
    Carron, Gilles
    Chen, Eric
    Wang, Yi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (06)
  • [23] CR Yamabe constant, CR Yamabe flow and its soliton
    Ho, Pak Tung
    Wang, Kunbo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 199
  • [24] Yamabe flow on manifolds with edges
    Bahuaud, Eric
    Vertman, Boris
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 127 - 159
  • [25] On conformal solutions of the Yamabe flow
    Barbosa, Ezequiel
    Ribeiro, Ernani, Jr.
    ARCHIV DER MATHEMATIK, 2013, 101 (01) : 79 - 89
  • [26] The Yamabe flow on incomplete manifolds
    Yuanzhen Shao
    Journal of Evolution Equations, 2018, 18 : 1595 - 1632
  • [27] Yamabe flow on Berwald manifolds
    Azami, Shahroud
    Razavi, Asadollah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (02)
  • [28] On conformal solutions of the Yamabe flow
    Ezequiel Barbosa
    Ernani Ribeiro
    Archiv der Mathematik, 2013, 101 : 79 - 89
  • [29] On the Chern-Yamabe Flow
    Lejmi, Mehdi
    Maalaoui, Ali
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (03) : 2692 - 2706
  • [30] Convergence of the CR Yamabe flow
    Ho, Pak Tung
    Sheng, Weimin
    Wang, Kunbo
    MATHEMATISCHE ANNALEN, 2019, 373 (1-2) : 743 - 830