An Edge Intelligent Method for Bearing Fault Diagnosis Based on a Parameter Transplantation Convolutional Neural Network

被引:15
|
作者
Ding, Xiang [1 ]
Wang, Hang [1 ,2 ]
Cao, Zheng [1 ]
Liu, Xianzeng [1 ,2 ]
Liu, Yongbin [1 ,2 ]
Huang, Zhifu [1 ]
机构
[1] Anhui Univ, Sch Elect Engn & Automat, Hefei 230601, Peoples R China
[2] Anhui Joint Key Lab Energy Internet Digital Collab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
edge computing; intelligent fault diagnosis; CNN; bearings; embedded systems; MODELS; CNN;
D O I
10.3390/electronics12081816
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A bearing is a key component in rotating machinery. The prompt monitoring of a bearings' condition is critical for the reduction of mechanical accidents. With the rapid development of artificial intelligence technology in recent years, machine learning-based intelligent fault diagnosis (IFD) methods have achieved remarkable success in the field of bearing condition monitoring. However, most algorithms are developed based on computer platforms that focus on analyzing offline, rather than real-time, signals. In this paper, an edge intelligence diagnosis method called S-AlexNet, which is based on a parameter transplantation convolutional neural network (CNN), is proposed. The method deploys the lightweight IFD method in a low-cost embedded system to monitor the bearing status in real time. Firstly, a lightweight IFD algorithm model is designed for embedded systems. The model is trained on a PC to obtain optimal parameters, such as the model's weights and bias. Finally, the optimal parameters are transplanted into the embedded system model to identify the bearing status on the edge side. Two datasets were used to validate the performance of the proposed method. The validation using the CWRU dataset shows that the proposed method achieves an average prediction accuracy of 94.4% on the test set. The validation using self-built data shows that the proposed method can identify bearing operating status in embedded systems with an average prediction accuracy of 99.81%. The results indicate that the proposed method has the advantages of high recognition accuracy, low model complexity, low cost, and high portability, which allow for the simple and effective implementation of the edge IFD of bearings in embedded systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Fault diagnosis of satellite flywheel bearing based on convolutional neural network
    Liu, Ying
    Pan, Qiang
    Wang, Hong
    He, Tian
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [32] Bearing fault diagnosis based on multiscale dilated convolutional neural network
    Chao, Zhipeng
    Yang, Yinghua
    Liu, Xiaozhi
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 56 - 61
  • [33] Rolling Bearing Fault Diagnosis Based on GWVD and Convolutional Neural Network
    Lv, Xiaoxuan
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 514 - 523
  • [34] A novel intelligent fault diagnosis method of bearing based on multi-head self-attention convolutional neural network
    Ren, Hang
    Liu, Shaogang
    Qiu, Bo
    Guo, Hong
    Zhao, Dan
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2024, 38
  • [35] A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network
    Xue, Feng
    Zhang, Weimin
    Xue, Fei
    Li, Dongdong
    Xie, Shulian
    Fleischer, Juergen
    MEASUREMENT, 2021, 176
  • [36] A Review on Convolutional Neural Network in Bearing Fault Diagnosis
    Waziralilah, N. Fathiah
    Abu, Aminudin
    Lim, M. H.
    Quen, Lee Kee
    Elfakharany, Ahmed
    ENGINEERING APPLICATION OF ARTIFICIAL INTELLIGENCE CONFERENCE 2018 (EAAIC 2018), 2019, 255
  • [37] Intelligent Fault Diagnosis Method through ACCC-Based Improved Convolutional Neural Network
    Zhang, Chao
    Huang, Qixuan
    Yang, Ke
    Zhang, Chaoyi
    ACTUATORS, 2023, 12 (04)
  • [38] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495
  • [39] A fault diagnosis method for rolling bearing based on gram matrix and multiscale convolutional neural network
    Zhang, Xinyan
    Cai, Shaobin
    Cai, Wanchen
    Mo, Yuchang
    Wei, Liansuo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Automatic Transmission Bearing Fault Diagnosis Based on Comprehensive Index Method and Convolutional Neural Network
    Li, Guangxin
    Chen, Yong
    Wang, Wenqing
    Wu, Yimin
    Liu, Rui
    WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (10):