Evaluation of Open-Source Large Language Models for Metal-Organic Frameworks Research

被引:13
|
作者
Bai, Xuefeng [1 ,2 ]
Xie, Yabo [1 ,2 ]
Zhang, Xin [1 ,2 ]
Han, Honggui [3 ,4 ]
Li, Jian-Rong [1 ,2 ]
机构
[1] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Coll Mat Sci & Engn, Dept Chem Engn, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Digital Community, Beijing Lab Urban Mass Transit,Minist Educ, Beijing 100124, Peoples R China
[4] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Compendex;
D O I
10.1021/acs.jcim.4c00065
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Along with the development of machine learning, deep learning, and large language models (LLMs) such as GPT-4 (GPT: Generative Pre-Trained Transformer), artificial intelligence (AI) tools have been playing an increasingly important role in chemical and material research to facilitate the material screening and design. Despite the exciting progress of GPT-4 based AI research assistance, open-source LLMs have not gained much attention from the scientific community. This work primarily focused on metal-organic frameworks (MOFs) as a subdomain of chemistry and evaluated six top-rated open-source LLMs with a comprehensive set of tasks including MOFs knowledge, basic chemistry knowledge, in-depth chemistry knowledge, knowledge extraction, database reading, predicting material property, experiment design, computational scripts generation, guiding experiment, data analysis, and paper polishing, which covers the basic units of MOFs research. In general, these LLMs were capable of most of the tasks. Especially, Llama2-7B and ChatGLM2-6B were found to perform particularly well with moderate computational resources. Additionally, the performance of different parameter versions of the same model was compared, which revealed the superior performance of higher parameter versions.
引用
收藏
页码:4958 / 4965
页数:8
相关论文
共 50 条
  • [41] Metal-Organic Frameworks and Metal-Organic Cages - A Perspective
    Pilgrim, Ben S.
    Champness, Neil R.
    CHEMPLUSCHEM, 2020, 85 (08): : 1842 - 1856
  • [42] Benchmarking open-source large language models on Portuguese Revalida multiple-choice questions
    Severino, Joao Victor Bruneti
    de Paula, Pedro Angelo Basei
    Berger, Matheus Nespolo
    Loures, Filipe Silveira
    Todeschini, Solano Amadori
    Roeder, Eduardo Augusto
    Veiga, Maria Han
    Guedes, Murilo
    Marques, Gustavo Lenci
    BMJ HEALTH & CARE INFORMATICS, 2025, 32 (01)
  • [43] ArcheType: A Novel Framework for Open-Source Column Type Annotation using Large Language Models
    Feuer, Benjamin
    Liu, Yurong
    Hegde, Chinmay
    Freire, Juliana
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (09): : 2279 - 2292
  • [44] Analyzing Women's Contributions to Open-Source Software Projects based on Large Language Models
    Zhuang, Yuqian
    Zhang, Mingya
    Yang, Yiyuan
    Wang, Liang
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2363 - 2368
  • [45] Need of Fine-Tuned Radiology Aware Open-Source Large Language Models for Neuroradiology
    Ray, Partha Pratim
    CLINICAL NEURORADIOLOGY, 2024,
  • [46] Toponym resolution leveraging lightweight and open-source large language models and geo-knowledge
    Hu, Xuke
    Kersten, Jens
    Klan, Friederike
    Farzana, Sheikh Mastura
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2024,
  • [47] Research trend of metal-organic frameworks: a bibliometric analysis
    Wang, Chong-Chen
    Ho, Yuh-Shan
    SCIENTOMETRICS, 2016, 109 (01) : 481 - 513
  • [48] Research progress in metal-organic frameworks and their derivatives in electrochemistry
    Chen, Lingling
    Liu, Yuxin
    Su, Yichun
    Zhu, Wenchen
    Du, Guangyu
    Pang, Huan
    SCIENCE CHINA-CHEMISTRY, 2025, : 1287 - 1316
  • [49] Research progress on amino acid metal-organic frameworks
    Tan S.
    Qu X.
    Luo J.
    Fan H.
    Lin J.
    Zhao Z.
    Jingxi Huagong/Fine Chemicals, 2024, 41 (05): : 971 - 980and1000
  • [50] Research progress in metal-organic frameworks and their derivatives in electrochemistry
    Lingling Chen
    Yuxin Liu
    Yichun Su
    Wenchen Zhu
    Guangyu Du
    Huan Pang
    Science China(Chemistry), 2025, 68 (04) : 1287 - 1316