The new report of domestic wastewater treatment and bioelectricity generation using Dieffenbachia seguine constructed wetland coupling microbial fuel cell (CW-MFC)

被引:3
|
作者
Chaijak, Pimprapa [1 ]
Sola, Phachirarat [2 ]
机构
[1] Thaksin Univ, Songkhla, Thailand
[2] Thailand Inst Nucl Technol, Publ Org, Bangkok, Thailand
关键词
wastewater treatment; biodegradation; microbial fuel cell; electricity generation; macrophyte; biocatalyst; ELECTRICITY-GENERATION;
D O I
10.24425/aep.2023.144737
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The constructed wetland integrated with microbial fuel cell (CW-MFC) has gained attention in wastewater treatment and electricity generation owing to its electricity generation and xenobiotic removal efficiencies. This study aims to use the CW-MFC with different macrophytes for domestic wastewater treatment and simultaneously electricity generation without chemical addition. The various macrophytes such as Crinum asiaticum, Canna indica, Hanguana malayana, Philodendron erubescens, and Dieffenbachia seguine were used as a cathodic biocatalyst. The electrochemical properties such as half-cell potential and power density were determined. For wastewater treatment, the chemical oxygen demand (COD) and other chemical compositions were measured. The results of electrochemical properties showed that the maximal half-cell potential was achieved from the macrophyte D. seguine. While the maximal power output of 5.42 & PLUSMN;0.17 mW/m2 (7.75 & PLUSMN;0.24 mW/m3) was gained from the CW-MFC with D. seguine cathode. Moreover, this CW-MFC was able to remove COD, ammonia, nitrate, nitrite, and phosphate of 94.00 & PLUSMN;0.05%, 64.31 & PLUSMN;0.20%, 50.02 & PLUSMN;0.10%, 48.00 & PLUSMN;0.30%, and 42.05 & PLUSMN;0.10% respectively. This study gained new knowledge about using CW-MFC planted with the macrophyte D. seguine for domestic wastewater treatment and generation of electrical power as a by-product without xenobiotic discharge.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [21] A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation
    Haiming Jiang
    Shengjun Luo
    Xiaoshuang Shi
    Meng Dai
    Rong-bo Guo
    Biotechnology Letters, 2012, 34 : 1269 - 1274
  • [22] A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation
    Hai-ming Jiang
    Sheng-jun Luo
    Xiao-shuang Shi
    Meng Dai
    Rong-bo Guo
    Journal of Central South University, 2013, 20 : 488 - 494
  • [23] A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation
    Jiang, Haiming
    Luo, Shengjun
    Shi, Xiaoshuang
    Dai, Meng
    Guo, Rong-bo
    BIOTECHNOLOGY LETTERS, 2012, 34 (07) : 1269 - 1274
  • [24] A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation
    Jiang Hai-ming
    Luo Sheng-jun
    Shi Xiao-shuang
    Dai Meng
    Guo Rong-bo
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (02) : 488 - 494
  • [25] Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell
    Yang, Qiao
    Wu, Zhenxing
    Liu, Lifen
    Zhang, Fengxiang
    Liang, Shengna
    MATERIALS, 2016, 9 (11):
  • [26] Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems
    Song, Hailiang
    Zhang, Shuai
    Long, Xizi
    Yang, Xiaoli
    Li, Hua
    Xiang, Wenli
    WATER, 2017, 9 (03):
  • [27] The Role of Wetland Plants on Wastewater Treatment and Electricity Generation in Constructed Wetland Coupled with Microbial Fuel Cell
    Li, Ke
    Qi, Jingyao
    Zhang, Fuguo
    Miwornunyuie, Nicholas
    Amaniampong, Paulette Serwaa
    Koomson, Desmond Ato
    Chen, Lei
    Yan, Yu
    Dong, Yanhong
    Setordjie, Victor Edem
    Samwini, Abigail Mwin-nea
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [28] Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell
    Yang, Houyun
    Chen, Jian
    Yu, Li
    Li, Weihua
    Huang, Xianhuai
    Qin, Qian
    Zhu, Shuguang
    ENVIRONMENTAL RESEARCH, 2022, 212
  • [29] Simultaneous generation of Bioelectricity and Treatment of Swine wastewater in a Microbial Fuel Cell
    Egbadon, Emmanuel O.
    Akujobi, Campbell O.
    Nweke, Chris O.
    Braide, Wesley
    Akaluka, Cynthia K.
    Adeleye, Samuel A.
    INTERNATIONAL LETTERS OF NATURAL SCIENCES, 2016, 54 : 100 - 107
  • [30] Up -flow constructed wetland -microbial fuel cell: Influence of floating plant, aeration and circuit connection on wastewater treatment performance and bioelectricity generation
    Teoh, Tean-Peng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Oon, Yoong-Ling
    Oon, Yoong-Sin
    Tan, Sing-Mei
    Thung, Wei-Eng
    JOURNAL OF WATER PROCESS ENGINEERING, 2020, 36