Antimicrobial Resistance Profiling and Genome Analysis of the penA-60.001 Neisseria gonorrhoeae Clinical Isolates in China in 2021

被引:9
|
作者
Tang, Yingxian [1 ,2 ,3 ]
Liu, Xiaofeng [4 ]
Chen, Wentao [5 ,6 ,7 ]
Luo, Xiaojuan [8 ]
Zhuang, Peiqu [9 ]
Li, Rongzhen [10 ]
Lin, Xiaomian [1 ]
机构
[1] Naval Med Univ, Dept Pharm, Affiliated Hosp 1, Shanghai, Peoples R China
[2] Guangzhou Med Univ, Affiliated Hosp 6, Qingyuan, Peoples R China
[3] Qingyuan Peoples Hosp, Qingyuan, Peoples R China
[4] Zhuhai Ctr Chron Dis Control, Zhuhai, Peoples R China
[5] Southern Med Univ, Sch Publ Hlth, BSL3 Lab Guangdong, Guangdong Prov Key Lab Trop Dis Res, Guangzhou, Peoples R China
[6] Southern Med Univ, Dermatol Hosp, Guangzhou, Peoples R China
[7] Guangzhou Key Lab Sexually Transmitted Dis Contro, Guangzhou, Peoples R China
[8] First Peoples Hosp Foshan, Dept Lab Med, Foshan, Peoples R China
[9] Maoming Peoples Hosp, Maoming, Peoples R China
[10] Huazhong Univ Sci & Technol, Union Shenzhen Hosp, Shenzhen, Peoples R China
来源
JOURNAL OF INFECTIOUS DISEASES | 2023年 / 228卷 / 06期
关键词
2021; AMR; China; N gonorrhoeae; penA-60001; TRANSMISSION; CEFTRIAXONE; INFECTION;
D O I
10.1093/infdis/jiad258
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background. Neisseria gonorrhoeae antimicrobial resistance (AMR) is an urgent public health threat. With dissemination of FC428-related clones, the efficacy of ceftriaxone has become controversial. Methods. Agar dilution and whole genome sequencing were used to analyze AMR. Results. High resistance to penicillin (75.2%), tetracycline (87.9%), ciprofloxacin (98.3%), ceftriaxone (8.9%), cefixime (14.3%), and azithromycin (8.6%) was observed among 463 isolates first collected in China in 2021. All penA-60.001 clones exhibited resistance to ceftriaxone or cefixime, and 1 of the 12 cases was resistant to azithromycin. ngMAST and ngSTAR of penA-60.001 isolates showed that single-nucleotide polymorphisms in the porB, tbpB, ponA, gyrA, and parC genes were the major causes of different sequence types. MLST-7365 (n = 5) and MLST-1903 (n = 3) were main genotypes, and the other 4 strains featured MLST-10314, MLST-13871, MLST-7827 and MLST-1600. Furthermore, resistance markers (eg, penA, blaTEM-1, blaTEM-135) and virus factors were detected. Most penA-60.001 strains were fully mixed with global FC428-related clones; 2021-A2 and F89 had the same origin; and 2021-A1 exhibited a unique evolutionary trajectory. Conclusions. Results provide the first demonstration of extremely severe AMR rates of N gonorrhoeae in China in 2021, particularly strains with ceftriaxone decreased susceptibility. The sustained transmission of penA-60.001 subclones might further threaten treatment effectiveness.
引用
收藏
页码:792 / 799
页数:8
相关论文
共 50 条
  • [21] Genotyping Neisseria gonorrhoeae gyrA and penA antimicrobial genes from remnant Neisseria gonorrhoeae positive Cepheid Xpert® clinical specimens - A feasibility study
    Qadir, S.
    Ellis, O.
    Keizur, E. M.
    Stafylis, C.
    Cortado, R.
    Klausner, J. D.
    JOURNAL OF MICROBIOLOGICAL METHODS, 2020, 168
  • [22] Hydrogel Droplet Microarray for Genotyping Antimicrobial Resistance Determinants in Neisseria gonorrhoeae Isolates
    Shaskolskiy, Boris
    Kandinov, Ilya
    Kravtsov, Dmitry
    Vinokurova, Alexandra
    Gorshkova, Sofya
    Filippova, Marina
    Kubanov, Alexey
    Solomka, Victoria
    Deryabin, Dmitry
    Dementieva, Ekaterina
    Gryadunov, Dmitry
    POLYMERS, 2021, 13 (22)
  • [23] Genomic surveillance and antimicrobial resistance in Neisseria gonorrhoeae isolates in Bangkok, Thailand in 2018
    Golparian, Daniel
    Kittiyaowamarn, Rossaphorn
    Paopang, Porntip
    Sangprasert, Pongsathorn
    Sirivongrangson, Pachara
    Franceschi, Francois
    Jacobsson, Susanne
    Wi, Teodora
    Unemo, Magnus
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2022, 77 (08) : 2171 - 2182
  • [24] Resistance to Azithromycin of Neisseria gonorrhoeae Isolates From 2 Cities in China
    Yuan, Liu-Feng
    Yin, Yue-Ping
    Dai, Xiu-Qin
    Pearline, Rachel V.
    Xiang, Zhi
    Unemo, Magnus
    Chen, Xiang-Sheng
    SEXUALLY TRANSMITTED DISEASES, 2011, 38 (08) : 764 - 768
  • [25] Analysis of quinolone resistance mechanisms in Neisseria gonorrhoeae isolates in vitro
    Tanaka, M
    Sakuma, S
    Takahashi, K
    Nagahuzi, T
    Saika, T
    Kobayashi, I
    Kumazawa, J
    SEXUALLY TRANSMITTED INFECTIONS, 1998, 74 (01) : 59 - 62
  • [26] High-Resolution Melting Analysis to Detect Antimicrobial Resistance Determinants in South African Neisseria gonorrhoeae Clinical Isolates and Specimens
    Mitchev, Nireshni
    Singh, Ravesh
    Ramsuran, Veron
    Ismail, Arshad
    Allam, Mushal
    Kwenda, Stanford
    Mnyameni, Florah
    Garrett, Nigel
    Swe-Han, Khine Swe
    Niehaus, Abraham J.
    Mlisana, Koleka P.
    INTERNATIONAL JOURNAL OF MICROBIOLOGY, 2022, 2022
  • [27] The changing epidemiology of Neisseria gonorrhoeae genogroups and antimicrobial resistance in Queensland, Australia, 2010-15: a case series analysis of unique Neisseria gonorrhoeae isolates
    McHugh, Lisa
    Dyda, Amalie
    Guglielmino, Christine
    Buckley, Cameron
    Lau, Colleen L.
    Jennison, Amy V.
    Regan, David G.
    Wood, James
    Whiley, David
    Trembizki, Ella
    SEXUAL HEALTH, 2023, 20 (04) : 296 - 302
  • [28] SURVEILLANCE OF ANTIBIOTIC-RESISTANCE IN CLINICAL ISOLATES OF NEISSERIA-GONORRHOEAE
    ISON, CA
    BRANLEY, NS
    KIRTLAND, K
    EASMON, CSF
    BRITISH MEDICAL JOURNAL, 1991, 303 (6813): : 1307 - 1307
  • [29] Resistance, molecular characterization and viability of Neisseria gonorrhoeae recent clinical isolates
    Calatrava-Hernandez, Elizabeth
    Foronda-Garcia-Hidalgo, Carla
    Gutierrez-Fernandez, Jose
    MEDICINA CLINICA, 2021, 156 (05): : 249 - 250
  • [30] Antimicrobial susceptibility of clinical isolates of Neisseria gonorrhoeae to alternative antimicrobials with therapeutic potential
    Lagace-Wiens, P. R. S.
    Adam, H. J.
    Laing, N. M.
    Baxter, M. R.
    Martin, I.
    Mulvey, M. R.
    Karlowsky, J. A.
    Hoban, D. J.
    Zhanel, G. G.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2017, 72 (08) : 2273 - 2277