INCM: neutrosophic c-means clustering algorithm for interval-valued data

被引:8
|
作者
Qiu, Haoye [1 ]
Liu, Zhe [2 ]
Letchmunan, Sukumar [2 ]
机构
[1] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Hainan, Peoples R China
[2] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Penang, Malaysia
关键词
Clustering; Neutrosophic c-means; Interval-valued data; Neutrosophic partition; FUZZY;
D O I
10.1007/s41066-024-00452-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data clustering has emerged as a prospective technique for analyzing interval-valued data and has found extensive applications across various practical domains. However, the presence of outliers and imprecise information in the real world renders fuzzy clustering cannot capture the overall information of complex data. Despite neutrosophic c-means clustering can reflect the imprecision and uncertainty and is immune to outliers, the inherent limitation lies in its capability to exclusively represent single-valued data. To tackle the above dilemma, in this paper, we propose a suitable extension of neutrosophic c-means clustering, termed as INCM, especially designed for interval-valued data. We formulate a novel objective function and provide iterative procedures for updating cluster prototype and neutrosophic partition. Finally, we conduct numerous experiments to illustrate the superiority of INCM against existing clustering algorithms on synthetic and real-world data sets.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Trimmed fuzzy clustering for interval-valued data
    Pierpaolo D’Urso
    Livia De Giovanni
    Riccardo Massari
    Advances in Data Analysis and Classification, 2015, 9 : 21 - 40
  • [32] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [33] Interval kernel Fuzzy C-Means clustering of incomplete data
    Li, Tianhao
    Zhang, Liyong
    Lu, Wei
    Hou, Hui
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    NEUROCOMPUTING, 2017, 237 : 316 - 331
  • [34] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [35] Possibilistic Clustering Methods for Interval-Valued Data
    Pimentel, Bruno Almeida
    De Souza, Renata M. C. R.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2014, 22 (02) : 263 - 291
  • [36] Fuzzy clustering of spatial interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    SPATIAL STATISTICS, 2023, 57
  • [37] Introduction to Interval-valued Neutrosophic Subring
    Gayen, Sudipta
    Smarandache, Florentin
    Jha, Sripati
    Kumar, Ranjan
    Neutrosophic Sets and Systems, 2020, 36 : 220 - 245
  • [38] A fuzzy C-means algorithm for optimizing data clustering
    Hashemi, Seyed Emadedin
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [39] Fuzzy c-ordered medoids clustering for interval-valued data
    D'Urso, Pierpaolo
    Leski, Jacek M.
    PATTERN RECOGNITION, 2016, 58 : 49 - 67
  • [40] A fuzzy clustering algorithm for interval-valued data based on Gauss distribution functions
    Lü, Ze-Hua
    Jin, Hai
    Yuan, Ping-Peng
    Zou, De-Qing
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (02): : 295 - 300