Spin-resonant tunneling in ferromagnetic conductor/semiconductor heterostructure for spin-filter application

被引:1
|
作者
Ibrahim, S. Jafar Ali [1 ]
Chandrasekar, Bruno [2 ]
Rajasekar, S. [3 ]
Chakravarthi, N. S. Kalyan [4 ]
Karunakaran, M. [5 ]
Braim, Mona [6 ]
Alodhayb, Abdullah N. [7 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Dept Internet Things, Vellore 632014, Tamil Nadu, India
[2] Gandhigram Rural Inst, Dept Phys, Gandhigram, India
[3] QIS Coll Engn & Technol, Dept Phys, Ongole 523272, India
[4] QIS Coll Engn & Technol, Ctr Data Sci, Ongole 523272, Andhra Pradesh, India
[5] Alagappa Govt Arts Coll, PG & Res Dept Phys, Thin Film & NanoSci Res Lab, Karaikkudi 630003, India
[6] Univ Warwick, Dept Phys, Coventry, England
[7] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
关键词
Ferromagnetic conductor; Barrier transparency; Resonance polarization; Spin; -filter; JUNCTIONS;
D O I
10.1016/j.jksus.2023.102873
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spin-dependent tunneling in a ferromagnetic conductor/ semiconductor is analyzed with zero external fields. The barrier transparency, dwell time, tunneling time of electrons through heterostructure and the degree of polarization efficiency are calculated in Fe/GaAs double barrier heterostructure. The polarization efficiency of Fe/GaAs and Fe/InAs double-barrier heterostructures are compared. The Fe/GaAs has a high degree spin-polarization than Fe/InAs structure. The barrier transparency peak is sharper at the high width of the barrier. The results show that the polarization efficiency is maximum when the barrier width is maximum. The tunneling lifetime of electrons is evaluated using Heisenberg's uncertainty principle. The spin components are completely separated at high barrier width and hence can be used effectively as a spin filter. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Spin regulation in composite spin-filter barrier devices
    Miao, Guo-Xing
    Chang, Joonyeon
    Assaf, Badih A.
    Heiman, Donald
    Moodera, Jagadeesh S.
    NATURE COMMUNICATIONS, 2014, 5
  • [42] Spin-dependent resonant tunneling in semiconductor nanostructures
    Silva, EAD
    La Rocca, GC
    BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (04) : 719 - 722
  • [43] IrMn based spin-filter spin-valves
    1600, Am Inst Phys, Woodbury, NY, USA (87):
  • [44] Barrier-height and bias-voltage-controlled spin-filter effect and tunneling magnetoresistance in full ferromagnetic junctions
    Jin, Dafei
    Ren, Yuan
    Li, Zheng-Zhong
    Xiao, Ming-wen
    Jin, Guojun
    Hu, An
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [45] Spin regulation in composite spin-filter barrier devices
    Guo-Xing Miao
    Joonyeon Chang
    Badih A. Assaf
    Donald Heiman
    Jagadeesh S. Moodera
    Nature Communications, 5
  • [46] IrMn based spin-filter spin-valves
    Huai, YM
    Anderson, G
    Pakala, M
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) : 5741 - 5743
  • [47] Barrier-height and bias-voltage-controlled spin-filter effect and tunneling magnetoresistance in full ferromagnetic junctions
    Jin, Dafei
    Ren, Yuan
    Li, Zheng-Zhong
    Xiao, Ming-Wen
    Jin, Guojun
    Hu, An
    Journal of Applied Physics, 2006, 99 (08):
  • [48] Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction
    Hajati, Yaser
    Rashidian, Zeinab
    AIP ADVANCES, 2016, 6 (02)
  • [49] Spin-filter effect in magnetite nanowire
    Liao, Zhi-Min
    Li, Ya-Dong
    Xu, Jun
    Zhang, Jing-Min
    Xia, Ke
    Yu, Da-Peng
    NANO LETTERS, 2006, 6 (06) : 1087 - 1091
  • [50] Computational prediction of the spin-polarized semiconductor equiatomic quaternary Heusler compound MnVZrP as a spin-filter
    Hoat, D. M.
    Hoang, Duc-Quang
    Naseri, Mosayeb
    Rivas-Silva, J. F.
    Kartamyshev, A., I
    Cocoletzi, Gregorio H.
    RSC ADVANCES, 2020, 10 (43) : 25609 - 25617