Dynamical behavior of solutions of a reaction-diffusion model in river network

被引:3
|
作者
Li, Jingjing [1 ]
Sun, Ningkui [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Peoples R China
关键词
Reaction-diffusion equation; Fisher-KPP equation; Long-time behavior; River network; FISHER-KPP EQUATION; POPULATION PERSISTENCE; PARABOLIC EQUATIONS; DISPERSAL; PROPAGATION; ADVECTION; EVOLUTION;
D O I
10.1016/j.nonrwa.2023.103989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the long-time behavior of solutions of a reaction-diffusion model in a one-dimensional river network, where the river network has two branches, and the water flow speeds in each branch are the same constant beta. We show the existence of two critical values c(0) and 2 with 0<c(0)<2, and prove that when -c(0)<=beta<2, the population density in every branch of the river goes to 1 as time goes to infinity; when -2<beta<-c(0), then, as time goes to infinity, the population density in every river branch converges to a positive steady state strictly below 1; when |beta|>= 2, the species will be washed down the stream, and so locally the population density converges to 0. Our result indicates that only if the water-flow speed is suitably small (i.e., |beta|<2), the species will survive in the long run.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Dynamical behavior of solutions of a reaction-diffusion-advection model with a free boundary
    Sun, Ningkui
    Zhang, Di
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [22] Dynamical behavior and bifurcation analysis of a homogeneous reaction-diffusion Atkinson system
    Yang, Xuguang
    Wang, Wei
    Chai, Yanyou
    Yu, Changjun
    BOUNDARY VALUE PROBLEMS, 2018,
  • [23] SOME MONOTONE PROPERTIES FOR SOLUTIONS TO A REACTION-DIFFUSION MODEL
    Li, Rui
    Lou, Yuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 4445 - 4455
  • [24] Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
    Wang, Sheng
    Liu, Wenbin
    Guo, Zhengguang
    Wang, Weiming
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] On the Solutions of the Generalized Reaction-Diffusion Model for Bacterial Colony
    A. M. A. El-Sayed
    S. Z. Rida
    A. A. M. Arafa
    Acta Applicandae Mathematicae, 2010, 110 : 1501 - 1511
  • [26] On the Solutions of the Generalized Reaction-Diffusion Model for Bacterial Colony
    El-Sayed, A. M. A.
    Rida, S. Z.
    Arafa, A. A. M.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1501 - 1511
  • [27] Traveling wave solutions for an autocatalytic reaction-diffusion model
    Mansour, M. B. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (02) : 276 - 281
  • [28] ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF A PERIODIC REACTION-DIFFUSION SYSTEM OF A COMPETITOR MUTUALIST MODEL
    TINEO, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 108 (02) : 326 - 341
  • [29] GLOBAL BEHAVIOR OF SOLUTIONS TO THE NONLOCAL IN TIME REACTION-DIFFUSION EQUATIONS
    Torebek, Berikbol t.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025,
  • [30] LARGE-TIME BEHAVIOR OF SOLUTIONS OF A REACTION-DIFFUSION EQUATION
    DEPABLO, A
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 389 - 398