Universal Qudit Gate Synthesis for Transmons

被引:18
|
作者
Fischer, Laurin E. [1 ,2 ]
Chiesa, Alessandro [3 ,4 ,5 ]
Tacchino, Francesco [1 ]
Egger, Daniel J. [1 ]
Carretta, Stefano [3 ,4 ,5 ]
Tavernelli, Ivano [1 ]
机构
[1] IBM Res Europe Zurich, IBM Quantum, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, CH-1015 Lausanne, Switzerland
[3] Univ Parma, Dipartimento Sci Matemat Fis & Informat, I-43124 Parma, Italy
[4] INFN, Sez Milano Bicocca, Grp Collegato Parma, I-43124 Parma, Italy
[5] INSTM, UdR Parma, I-43124 Parma, Italy
来源
PRX QUANTUM | 2023年 / 4卷 / 03期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1103/PRXQuantum.4.030327
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using d-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond 99% in the d = 4 case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of SU(16) gates for noisy quantum hardware and an embedded error-correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control-a valuable extension to the operational toolbox of superconducting quantum information processing-is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Yang-Baxter equation in all dimensions and universal qudit gates
    Pourkia, A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 219 (01) : 544 - 556
  • [22] Minimal measurements of the gate fidelity of a qudit map -: art. no. 014303
    Bagan, E
    Baig, M
    Muñoz-Tapia, R
    PHYSICAL REVIEW A, 2003, 67 (01):
  • [23] Demonstration of a High-Fidelity CNOT Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression
    Kandala, A.
    Wei, K. X.
    Srinivasan, S.
    Magesan, E.
    Carnevale, S.
    Keefe, G. A.
    Klaus, D.
    Dial, O.
    McKay, D. C.
    PHYSICAL REVIEW LETTERS, 2021, 127 (13)
  • [24] Synthesis of Reversible Universal QCA Gate Structure for Energy Efficient Digital Design
    Sen, Bibhash
    Adak, Tanumoy
    Anand, Anshu S.
    Sikdar, BipJab K.
    2011 IEEE REGION 10 CONFERENCE TENCON 2011, 2011, : 806 - 810
  • [25] UNIVERSAL LOGIC GATE TRANSMISSION GATE ARRAY.
    Zhang, C.
    Electronic Engineering (London), 1985, 57 (706): : 61 - 64
  • [26] Noisy qudit vs multiple qubits: conditions on gate efficiency for enhancing fidelity
    Jankovic, Denis
    Hartmann, Jean-Gabriel
    Ruben, Mario
    Hervieux, Paul-Antoine
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [27] A nanospintronic universal quantum gate
    Bandyopadhyay, S
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 11 (2-3): : 126 - 130
  • [28] A universal gate for magnetologic computers
    Pampuch, C
    Ney, A
    Koch, R
    EUROPHYSICS LETTERS, 2004, 66 (06): : 895 - 901
  • [29] Realization of the universal-NOT gate and of the universal quantum cloning
    Sias, C
    Sciarrino, F
    De Martini, F
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (4-5): : 349 - 358
  • [30] Trade-off coding for universal qudit cloners motivated by the Unruh effect
    Jochym-O'Connor, Tomas
    Bradler, Kamil
    Wilde, Mark M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (41)