AUV 3D docking control using deep reinforcement learning

被引:8
|
作者
Zhang, Tianze [1 ]
Miao, Xuhong [2 ]
Li, Yibin [1 ]
Jia, Lei [3 ]
Wei, Zheng [2 ]
Gong, Qingtao [4 ]
Wen, Tao [5 ]
机构
[1] Shandong Univ, Inst Marine Sci & Technol, Qingdao 266237, Shandong, Peoples R China
[2] Naval Res Acad, Beijing 100161, Peoples R China
[3] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
[4] Ludong Univ, Ulsan Ship & Ocean Coll, Yantai 264025, Shandong, Peoples R China
[5] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
关键词
Autonomous underwater vehicle; Deep reinforcement learning; Docking control; Ocean currents; Wave disturbance; SYSTEM;
D O I
10.1016/j.oceaneng.2023.115021
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Autonomous docking can enable AUV to have long endurance, so it is necessary to consider the issue of robust docking control under current and wave disturbances. In this work, based on the proximal policy optimization (PPO) algorithm, we developed a model-free docking controller to complete three-dimensional docking tasks under disturbances. To improve the performance of PPO, two mechanisms are proposed, including adaptive rollback clipping and self-generated demonstration replay. A simulation environment is constructed, including fuzzy hydrodynamic parameters, ocean current and wave disturbance model. Simulation results demonstrate that our proposed method has faster learning speed, higher robustness, and can control AUV to achieve 3D docking tasks in complex environments with a high success rate.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning
    Hu, Jingzhi
    Zhang, Hongliang
    Bian, Kaigui
    Di Renzo, Marco
    Han, Zhu
    Song, Lingyang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2182 - 2197
  • [42] Hierarchical Planning with Deep Reinforcement Learning for 3D Navigation of Microrobots in Blood Vessels
    Yang, Yuguang
    Bevan, Michael A.
    Li, Bo
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (11)
  • [43] 3D UAV Trajectory and Data Collection Optimisation Via Deep Reinforcement Learning
    Nguyen, Khoi Khac
    Duong, Trung Q.
    Tan Do-Duy
    Claussen, Holger
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (04) : 2358 - 2371
  • [44] Deep Reinforcement Learning-Based 3D Exploration with a Wall Climbing Robot
    Das, Arya
    Halder, Raju
    Thakur, Atul
    2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 863 - 868
  • [45] A Validation Approach for Deep Reinforcement Learning of a Robotic Arm in a 3D Simulated Environment
    Gruosso, Monica
    Capece, Nicola
    Erra, Ugo
    Biancospino, Flavio
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 43 - 48
  • [46] Adaptive Deep Reinforcement Learning for Efficient 3D Navigation of Autonomous Underwater Vehicles
    Politi, Elena
    Stefanidou, Artemis
    Chronis, Christos
    Dimitrakopoulos, George
    Varlamis, Iraklis
    IEEE ACCESS, 2024, 12 : 178209 - 178221
  • [47] 3D Building Facade Reconstruction Using Deep Learning
    Bacharidis, Konstantinos
    Sarri, Froso
    Ragia, Lemonia
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (05)
  • [48] 3D Fingerprint Gender Classification Using Deep Learning
    Liu, Haozhe
    Zhang, Wentian
    Liu, Feng
    Qi, Yong
    BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 37 - 45
  • [49] Nonlinear Optimal Control Using Deep Reinforcement Learning
    Bucci, Michele Alessandro
    Semeraro, Onofrio
    Allauzen, Alexandre
    Cordier, Laurent
    Mathelin, Lionel
    IUTAM LAMINAR-TURBULENT TRANSITION, 2022, 38 : 279 - 290
  • [50] CNC machine control using deep reinforcement learning
    Kalandyk, Dawid
    Kwiatkowski, Bogdan
    Mazur, Damian
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (03)