Quantum key distribution via frequency translation in a nonlinear optical fiber

被引:0
|
作者
Bonetti, J. [1 ]
Hernandez, S. M. [1 ,2 ]
Grosz, D. F. [1 ,2 ]
机构
[1] Comis Nacl Energia Atom, Inst Balseiro, Dept Ingn Telecomunicac, Grp Comunicac Opt, RA-8400 Rio Negro, Argentina
[2] Consejo Nacl Invest Cient & Tecn CONICET, RA-1425 Buenos Aires, Argentina
来源
OPTICA PURA Y APLICADA | 2023年 / 56卷 / 02期
关键词
quantum key distribution; quantum frequency translation; BB84; SINGLE-PHOTON SOURCES; LIGHT; DOTS;
D O I
10.7149/OPA.56.2.51118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a simple and original implementation of the BB84 quantum key distribution protocol via a quantum frequency-translation process in a nonlinear optical fiber. Unlike most conventional quantum key distribution implementations, which rely on the photon polarization/phase, encoding quantum information in the photon frequency state is inherently more stable against mechanical and/or thermal fluctuations over transmission media such as optical fibers. We also show the proposed scheme to be naturally expandable to larger character sets, and demonstrate a straightforward extension to a four-character alphabet (qu-quarts), providing enhanced security for quantum key distribution applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantum key distribution using optical coherent states via amplitude damping
    A. El Allati
    M. El Baz
    Optical and Quantum Electronics, 2015, 47 : 1035 - 1046
  • [22] Quantum key distribution using optical coherent states via amplitude damping
    El Allati, A.
    El Baz, M.
    OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (05) : 1035 - 1046
  • [23] Quantum key distribution via an optical wireless communication link for telephone networks
    Suchat, S.
    Khunnam, W.
    Yupapin, P. P.
    OPTICAL ENGINEERING, 2007, 46 (10)
  • [24] Quantum key distribution over multicore fiber
    Dynes, J. F.
    Kindness, S. J.
    Tam, S. W. -B.
    Plews, A.
    Sharpe, A. W.
    Lucamarini, M.
    Frohlich, B.
    Yuan, Z. L.
    Penty, R. V.
    Shields, A. J.
    OPTICS EXPRESS, 2016, 24 (08): : 8081 - 8087
  • [25] Robust gigahertz fiber quantum key distribution
    Clarke, Patrick J.
    Collins, Robert J.
    Hiskett, Philip A.
    Townsend, Paul D.
    Buller, Gerald S.
    APPLIED PHYSICS LETTERS, 2011, 98 (13)
  • [26] Optical networking for quantum key distribution and quantum communications
    Chapuran, T. E.
    Toliver, P.
    Peters, N. A.
    Jackel, J.
    Goodman, M. S.
    Runser, R. J.
    McNown, S. R.
    Dallmann, N.
    Hughes, R. J.
    McCabe, K. P.
    Nordholt, J. E.
    Peterson, C. G.
    Tyagi, K. T.
    Mercer, L.
    Dardy, H.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [27] Simulation of quantum key distribution in a 16x16 optical fiber network
    Lin, HH
    Tsao, SL
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING II, 2004, 5551 : 241 - 252
  • [28] Practical quantum key distribution system for high-speed optical fiber communications
    Liao, CJ
    Zheng, LM
    Liu, SH
    ICO20: OPTICAL COMMUNICATION, 2006, 6025
  • [29] Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber
    Patel, K. A.
    Dynes, J. F.
    Choi, I.
    Sharpe, A. W.
    Dixon, A. R.
    Yuan, Z. L.
    Penty, R. V.
    Shields, A. J.
    PHYSICAL REVIEW X, 2012, 2 (04):
  • [30] Principle of Quantum Key Distribution on an Optical Fiber Based on Time Shifts of TB Qubits
    Zadorin, A. S.
    Makhorin, D. A.
    RUSSIAN PHYSICS JOURNAL, 2016, 59 (03) : 346 - 351