Hyperspectral image denoising via spectral noise distribution bootstrap

被引:8
|
作者
Pan, Erting [1 ]
Ma, Yong [1 ]
Mei, Xiaoguang [1 ]
Fan, Fan [1 ]
Ma, Jiayi [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image denoising; Image restoration; Spectral distribution; Noise estimation; Noise distribution; RESTORATION;
D O I
10.1016/j.patcog.2023.109699
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) denoising is an ill-posed problem, leading to integrating proper prior knowledge about hyperspectral noise is critical to developing an efficient denoising method. Most existing methods share a common assumption that all bands have equal noise intensity. However, such assumption runs counter to the practical HSIs, leading to unpleasant denoising results. To tackle this, we intend to investigate the intrinsic properties of real HSI noise in the spectral dimension and construct a novel denoising framework bootstrapping by spectral noise distribution (N) over cap , termed (N) over cap -Net. On the one hand, we develop dense and sparse recurrent calculations, exploiting intrinsic properties of HSI noise (i.e. , diversity, dense dependency, and global sparsity) to estimate spectral noise distribution. On the other hand, having the estimated spectral noise distribution, we develop a bootstrap mechanism with a repetitive emphasis on its guidance for subsequent spatial noise separation and clean HSI recovery, ensuring a more delicate denoising effect. In particular, we verify that the proposed denoising framework can achieve promising denoising performances due to the merit of spectral noise distribution bootstrapping, which also promotes new insights for future related research. The code is avaliable at https://github.com/EtPan/N-Net . (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Hyperspectral Image Denoising via Subspace Low-rank Representation and Spatial-spectral Total Variation
    Ye, Jun
    Zhang, Xian
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2020, 64 (01)
  • [32] Spatial-Spectral Oriented Triple Attention Network for Hyperspectral Image Denoising
    Xiao, Zilong
    Qin, Hanlin
    Yang, Shuowen
    Yan, Xiang
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [33] SSCAN: A Spatial-Spectral Cross Attention Network for Hyperspectral Image Denoising
    Wang, Zhiqiang
    Shao, Zhenfeng
    Huang, Xiao
    Wang, Jiaming
    Lu, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [34] SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
    Xiong, Fengchao
    Ye, Minchao
    Zhou, Jun
    Qian, Yuntao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1225 - 1228
  • [35] Multiscale-Sparse Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Xiao, Zilong
    Qin, Hanlin
    Yang, Shuowen
    Yan, Xiang
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [36] Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising
    Cao, Xiangyong
    Fu, Xueyang
    Xu, Chen
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] A Neural Network for Hyperspectral Image Denoising by Combining Spatial-Spectral Information
    Lian, Xiaoying
    Yin, Zhonghai
    Zhao, Siwei
    Li, Dandan
    Lv, Shuai
    Pang, Boyu
    Sun, Dexin
    REMOTE SENSING, 2023, 15 (21)
  • [38] HYPERSPECTRAL IMAGE DESTRIPING AND DENOISING WITH SPECTRAL LOW RANK AND TENSOR NUCLEAR NORM
    Liu, Pengfei
    Liu, Lanlan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7304 - 7307
  • [39] Spatial-spectral weighted nuclear norm minimization for hyperspectral image denoising
    Huang, Xinjian
    Du, Bo
    Tao, Dapeng
    Zhang, Liangpei
    NEUROCOMPUTING, 2020, 399 : 271 - 284
  • [40] Graph Spatio-Spectral Total Variation Model for Hyperspectral Image Denoising
    Takemoto, Shingo
    Naganuma, Kazuki
    Ono, Shunsuke
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19