Hyperspectral image denoising via spectral noise distribution bootstrap

被引:8
|
作者
Pan, Erting [1 ]
Ma, Yong [1 ]
Mei, Xiaoguang [1 ]
Fan, Fan [1 ]
Ma, Jiayi [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image denoising; Image restoration; Spectral distribution; Noise estimation; Noise distribution; RESTORATION;
D O I
10.1016/j.patcog.2023.109699
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) denoising is an ill-posed problem, leading to integrating proper prior knowledge about hyperspectral noise is critical to developing an efficient denoising method. Most existing methods share a common assumption that all bands have equal noise intensity. However, such assumption runs counter to the practical HSIs, leading to unpleasant denoising results. To tackle this, we intend to investigate the intrinsic properties of real HSI noise in the spectral dimension and construct a novel denoising framework bootstrapping by spectral noise distribution (N) over cap , termed (N) over cap -Net. On the one hand, we develop dense and sparse recurrent calculations, exploiting intrinsic properties of HSI noise (i.e. , diversity, dense dependency, and global sparsity) to estimate spectral noise distribution. On the other hand, having the estimated spectral noise distribution, we develop a bootstrap mechanism with a repetitive emphasis on its guidance for subsequent spatial noise separation and clean HSI recovery, ensuring a more delicate denoising effect. In particular, we verify that the proposed denoising framework can achieve promising denoising performances due to the merit of spectral noise distribution bootstrapping, which also promotes new insights for future related research. The code is avaliable at https://github.com/EtPan/N-Net . (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Hyperspectral Image Denoising via Nonlocal Spectral Sparse Subspace Representation
    Wang, Hailin
    Peng, Jiangjun
    Cao, Xiangyong
    Wang, Jianjun
    Zhao, Qibin
    Meng, Deyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5189 - 5203
  • [2] Hyperspectral Image Denoising via Spatial-Spectral Recurrent Transformer
    Fu, Guanyiman
    Xiong, Fengchao
    Lu, Jianfeng
    Zhou, Jun
    Zhou, Jiantao
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [3] Hyperspectral Image Denoising by Asymmetric Noise Modeling
    Xu, Shuang
    Cao, Xiangyong
    Peng, Jiangjun
    Ke, Qiao
    Ma, Cong
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] HYPERSPECTRAL IMAGE DENOISING VIA SPECTRAL AND SPATIAL LOW-RANK APPROXIMATION
    Chang, Yi
    Yan, Luxin
    Zhong, Sheng
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4193 - 4196
  • [5] HYPERSPECTRAL IMAGE DENOISING VIA COUPLED SPECTRAL-SPATIAL TENSOR REPRESENTATION
    Zhao, Lu
    Xu, Yang
    Wei, Zhihui
    Yu, Renping
    Qian, Ling
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4784 - 4787
  • [6] Hider: A Hyperspectral Image Denoising Transformer With Spatial-Spectral Constraints for Hybrid Noise Removal
    Chen, Hongyu
    Yang, Guangyi
    Zhang, Hongyan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 8797 - 8811
  • [7] Hyperspectral Image Denoising via Adversarial Learning
    Zhang, Junjie
    Cai, Zhouyin
    Chen, Fansheng
    Zeng, Dan
    REMOTE SENSING, 2022, 14 (08)
  • [8] Spectral Enhanced Rectangle Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Liu, Ji
    Fu, Ying
    Zhang, Yulun
    Dou, Dejing
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5805 - 5814
  • [9] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [10] Spectral-Spatial Kernel Regularized for Hyperspectral Image Denoising
    Yuan, Yuan
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07): : 3815 - 3832