Reconstruction of 3-D Ocean Chlorophyll a Structure in the Northern Indian Ocean Using Satellite and BGC-Argo Data

被引:9
|
作者
Hu, Qiwei [1 ,2 ]
Chen, Xiaoyan [1 ]
Bai, Yan [1 ]
He, Xianqiang [1 ,3 ]
Li, Teng [1 ]
Pan, Delu [1 ,2 ]
机构
[1] Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200240, Peoples R China
[3] Donghai Lab, Zhoushan 316021, Peoples R China
基金
中国国家自然科学基金;
关键词
3-D structure; biogeochemical Argo (BGC-Argo); chlorophyll a (Chla); northern Indian Ocean (NIO); remote sensing; RANDOM FOREST; DRIVEN; BIOMASS; COLOR;
D O I
10.1109/TGRS.2022.3233385
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a novel method using satellite and biogeochemical Argo (BGC-Argo) data to retrieve the 3-D structure of chlorophyll alpha (Chla) in the northern Indian Ocean (NIO). The random forest (RF)-based method infers the vertical distribution of Chla using the near-surface and vertical features. The input variables can be divided into three categories: 1) near-surface features acquired by satellite products; 2) vertical physical properties obtained from temperature and salinity profiles collected by BGC-Argo floats; and 3) the temporal and spatial features, i.e., day of the year, longitude, and latitude. The RF-model is trained and evaluated using a large database including 9738 profiles of Chla and temperature-salinity properties measured by BGC-Argo floats from 2011 to 2021, with synchronous satellite-derived products. The retrieved Chla values and the validation dataset (including 1948 Chla profiles) agree fairly well, with R-2= 0.962 , root-mean-square error (RMSE) = 0.012, and mean absolute percent difference (MAPD) = 11.31%. The vertical Chla profile in the NIO retrieved from the RF-model is more accurate and robust compared to the operational Chla profile datasets derived from the neural network and numerical modeling. A major application of the RF-retrieved Chla profiles is to obtain the 3-D Chla structure with high vertical resolution. This will help to quantify phytoplankton productivity and carbon fluxes in the NIO more accurately. We expect that RF-model can be used to develop long-time series products to understand the variability of 3-D Chla in future climate change scenarios.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Evaluation of the 2012 Indian Ocean Coseismic Fault Model in 3-D Heterogeneous Structure based on Vertical and Horizontal GNSS Observation
    Pratama, Cecep
    Ito, Takeo
    Tabei, Takao
    Kimata, Fumiaki
    Gunawan, Endra
    Ohta, Yusaku
    Yamashina, Tadashi
    Nurdin, Irwandi
    Sugiyanto, Didik
    Muksin, Umar
    Ismail, Nazli
    Meilano, Irwan
    INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2017, 2018, 1987
  • [42] Studies on CO variation and trends over South Africa and the Indian Ocean using TES satellite data
    Toihir, Abdoulwahab M.
    Venkataraman, Sivakumar
    Mbatha, Nkanyiso
    Sangeetha, Sivakumar K.
    Bencherif, Hassan
    Brunke, Ernst-Guenther
    Labuschagne, Casper
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2015, 111 (9-10)
  • [43] Spatiotemporal variability of chlorophyll a in the Altantic and Indian sectors of the Southern Ocean during February-April of 2000 according to satellite and expeditionary data
    Demidov, A. B.
    Vedernikov, V. I.
    Sheberstov, S. V.
    OCEANOLOGY, 2007, 47 (04) : 507 - 518
  • [44] Reconstruction of subsurface ocean state variables using Convolutional Neural Networks with combined satellite and in situ data
    Smith, Philip A. H.
    Sorensen, Kristian Aa.
    Nardelli, Bruno Buongiorno
    Chauhan, Anshul
    Christensen, Asbjorn
    St John, Michael
    Rodrigues, Filipe
    Mariani, Patrizio
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [45] 3-D Operation Situs Reconstruction with Time-of-Flight Satellite Cameras Using Photogeometric Data Fusion
    Haase, Sven
    Bauer, Sebastian
    Wasza, Jakob
    Kilgus, Thomas
    Maier-Hein, Lena
    Schneider, Armin
    Kranzfelder, Michael
    Feussner, Hubertus
    Hornegger, Joachim
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT I, 2013, 8149 : 356 - 363
  • [46] Monitoring Off-Shore Fishing in the Northern Indian Ocean Based on Satellite Automatic Identification System and Remote Sensing Data
    Li, Jie
    Xing, Qianguo
    Li, Xuerong
    Arif, Maham
    Li, Jinghu
    SENSORS, 2024, 24 (03)
  • [47] Dynamic Features of Frontal Zones Structure in the Ocean for Using in the Numerical Models Based on Satellite Data
    Kartushinsky, Alexey, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2011, 4 (02): : 208 - 216
  • [48] Surface pCO2 variability in two contrasting basins of North Indian Ocean using satellite data
    Mohanty, Sachiko
    Raman, Mini
    Mitra, Debashis
    Chauhan, Prakash
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2022, 179
  • [49] On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data
    Mierla, M.
    Inhester, B.
    Antunes, A.
    Boursier, Y.
    Byrne, J. P.
    Colaninno, R.
    Davila, J.
    de Koning, C. A.
    Gallagher, P. T.
    Gissot, S.
    Howard, R. A.
    Howard, T. A.
    Kramar, M.
    Lamy, P.
    Liewer, P. C.
    Maloney, S.
    Marque, C.
    McAteer, T. J.
    Moran, T.
    Rodriguez, L.
    Srivastava, N.
    Cyr, O. C. St.
    Stenborg, G.
    Temmer, M.
    Thernisien, A.
    Vourlidas, A.
    West, M. J.
    Wood, B. E.
    Zhukov, A. N.
    ANNALES GEOPHYSICAE, 2010, 28 (01) : 203 - 215
  • [50] New Insights into the Seamount Structure of the Northern Part of the Ninetyeast Ridge (Indian Ocean) through the Integrated Analysis of Geophysical Data
    Yutsis, Vsevolod
    Levchenko, Oleg
    Ivanenko, Alexander
    Veklich, Ilya
    Turko, Nataliya
    Marinova, Yulia
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (05)