共 50 条
Spectrum of activity of Salmonella anti-biofilm compounds: Evaluation of activity against biofilm-forming ESKAPE pathogens
被引:3
|作者:
Bennett, Aliyah N.
[1
,2
,3
,4
]
Woolard, Katherine J.
[5
]
Sorge, Amy
[5
]
Melander, Christian
[5
]
Gunn, John S.
[1
,2
,6
,7
]
机构:
[1] Nationwide Childrens Hosp, Abigail Wexner Res Inst, Ctr Microbial Pathogenesis, Columbus, OH USA
[2] Ohio State Univ, Infect Dis Inst, Columbus, OH USA
[3] Ohio State Univ, Coll Med, Biomed Sci Grad Program, Columbus, OH USA
[4] Ohio State Univ, Coll Med, Med Scientist Training Program, Columbus, OH USA
[5] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN USA
[6] Ohio State Univ, Coll Med, Dept Pediat, Columbus, OH USA
[7] Ohio State Univ, Nationwide Childrens Hosp, Abigail Wexner Res Inst, Ctr Microbial Pathogenesis,Dept Pediat, 700 Childrens Dr,Room W411, Columbus, OH 43205 USA
来源:
基金:
美国国家卫生研究院;
关键词:
ESKAPE pathogens;
Antibiofilm small molecule compounds;
Biofilm;
Antibiotic;
GENE-EXPRESSION;
STRATEGIES;
ESP;
D O I:
10.1016/j.bioflm.2023.100158
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
The ESKAPE pathogens are a group of bacteria that are a leading cause of health-care associated infections and are known to be agents of chronic, biofilm-mediated infections. These chronic bacterial infections often respond poorly to antibiotics and in some cases may require surgical intervention in order to cure the infection. As biofilms are often the critical mediator of a chronic infection, it is essential to develop therapies that target bacteria within the biofilm state. Herein, we report the development of a rapid, 96-well plate-based assay that employs conditions specific for each species to optimize biofilm production and allow for easy identification of differences in biofilm mass after treatment with anti-biofilm candidates. We used these ESKAPE-specific biofilm assays to test our previously identified Salmonella anti-biofilm small molecule compounds, JG-1 and M4, for antibiofilm activity. The results demonstrated that JG-1 and M4 have anti-biofilm activity against Enterobacter spp., S. aureus, E. faecium, P. aeruginosa, and A. baumannii. In addition, we identified that M4 has significant antimicrobial activity against S. aureus and E. faecium at concentrations >10 mu M (X mu g/mL). These findings support the claim that JG-1 and M4 have broad-spectrum anti-biofilm activity, while M4 has antimicrobial activity against the Gram-positive members of the ESKAPE pathogens. Thus, these compounds have the potential to have a significant impact on treating multiple types of commonly encountered biofilm-mediated infections.
引用
收藏
页数:13
相关论文