Operational prediction of solar flares using a transformer-based framework

被引:10
|
作者
Abduallah, Yasser [1 ,2 ]
Wang, Jason T. L. [1 ,2 ]
Wang, Haimin [1 ,3 ,4 ]
Xu, Yan [1 ,3 ,4 ]
机构
[1] New Jersey Inst Technol, Inst Space Weather Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
[4] New Jersey Inst Technol, Big Bear Solar Observ, 40386 North Shore Lane, Big Bear City, CA 92314 USA
关键词
D O I
10.1038/s41598-023-40884-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections are sources of space weather, which negatively affects a variety of technologies at or near Earth, ranging from blocking high-frequency radio waves used for radio communication to degrading power grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore crucial for preparedness and disaster risk management. In this article, we present a transformer based framework, named SolarFlareNet, for predicting whether an AR would produce a ?-class flare within the next 24 to 72 h. We consider three ? classes, namely the =M5.0 class, the =M class and the =C class, and build three transformers separately, each corresponding to a ? class. Each transformer is used to make predictions of its corresponding ?-class flares. The crux of our approach is to model data samples in an AR as time series and to use transformers to capture the temporal dynamics of the data samples. Each data sample consists of magnetic parameters taken from Space-weather HMI Active Region Patches (SHARP) and related data products. We survey flare events that occurred from May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and build a database of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels of the data samples suitable for machine learning. We further extend the deterministic approach to a calibration-based probabilistic forecasting method. The SolarFlareNet system is fully operational and is capable of making near real-time predictions of solar flares on the Web.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Transformer-Based Framework for Biomedical Information Retrieval Systems
    Hall, Karl
    Jayne, Chrisina
    Chang, Victor
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 317 - 331
  • [42] TBMF Framework: A Transformer-Based Multilevel Filtering Framework for PD Detection
    Xu, Ning
    Wang, Wensong
    Fulnecek, Jan
    Kabot, Ondrej
    Misak, Stanislav
    Wang, Lipo
    Zheng, Yuanjin
    Gooi, Hoay Beng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) : 4098 - 4107
  • [43] Rethinking Transformer-based Set Prediction for Object Detection
    Sun, Zhiqing
    Cao, Shengcao
    Yang, Yiming
    Kitani, Kris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3591 - 3600
  • [44] Transformer-based attention network for stock movement prediction
    Zhang, Qiuyue
    Qin, Chao
    Zhang, Yunfeng
    Bao, Fangxun
    Zhang, Caiming
    Liu, Peide
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202
  • [45] TransCFD: A transformer-based decoder for flow field prediction
    Jiang, Jundou
    Li, Guanxiong
    Jiang, Yi
    Zhang, Laiping
    Deng, Xiaogang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [46] Deep Transformer-Based Asset Price and Direction Prediction
    Gezici, Abdul Haluk Batur
    Sefer, Emre
    IEEE ACCESS, 2024, 12 : 24164 - 24178
  • [47] Transformer-based Architecture for Empathy Prediction and Emotion Classification
    Vasava, Himil
    Uikey, Pramegh
    Wasnik, Gaurav
    Sharma, Raksha
    PROCEEDINGS OF THE 12TH WORKSHOP ON COMPUTATIONAL APPROACHES TO SUBJECTIVITY, SENTIMENT & SOCIAL MEDIA ANALYSIS, 2022, : 261 - 264
  • [48] HTTNet: hybrid transformer-based approaches for trajectory prediction
    Ge, Xianlei
    Shen, Xiaobo
    Zhou, Xuanxin
    Li, Xiaoyan
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (05)
  • [49] Transformer-based power system energy prediction model
    Rao, Zhuyi
    Zhang, Yunxiang
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 913 - 917
  • [50] Transformer-Based Prediction of Hospital Readmissions for Diabetes Patients
    Garcia-Mosquera, Jorge
    Villa-Monedero, Maria
    Gil-Martin, Manuel
    San-Segundo, Ruben
    ELECTRONICS, 2025, 14 (01):