A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things

被引:112
|
作者
Xu, Hao [1 ]
Sun, Zihan [2 ]
Cao, Yuan [3 ]
Bilal, Hazrat [4 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215137, Jiangsu, Peoples R China
[2] Soochow Univ, Dongwu Business Sch, Finance & Econ Sch, Suzhou 215021, Jiangsu, Peoples R China
[3] Soochow Univ, Sch Comp Sci &Technol, Suzhou 215006, Jiangsu, Peoples R China
[4] Univ Sci & Technol China, Dept Automat, Hefei 2300271, Peoples R China
关键词
Intrusion detection system (IDS); Automated machine learning (Auto-ML); Multi-class classification; Internet of Things (IoT); Network security; DETECTION SYSTEM; FEATURE-SELECTION; IOT; NETWORK; MANAGEMENT; ENERGY;
D O I
10.1007/s00500-023-09037-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cyber-attacks and network intrusion have surfaced as major concerns for modern days applications of the Internet of Things (IoT). The existing intrusion detection and prevention techniques have a wide range of limitations and thus are unable to precisely detect any type of attack or anomaly within the network traffic. Many machine learning-based algorithms have also been presented by the researchers, which lack performance in terms of classification accuracy, or in terms of multi-class classification. This research presents a data-driven approach for intrusion and anomaly detection, where the data is processed and filtered using different algorithms. The quality of the training dataset is improved by using Synthetic Minority Oversampling Technique (SMOTE) algorithm and mutual information. Automated machine learning is also used to detect the algorithm with auto-tuned hyper-parameters that best suit to classify the data. This technique not only saves the computational cost to test the data at run-time but also provides an optimal algorithm without the need to run calculations to tune hyper-parameters, manually. The resultant algorithm solves a multi-class classification problem with an accuracy of 99.7%, outperforming the existing algorithms by a decent margin.
引用
收藏
页码:14469 / 14481
页数:13
相关论文
共 50 条
  • [41] Survey of Intrusion Detection Using Deep Learning in the Internet of Things
    Farhan B.I.
    Jasim A.D.
    Iraqi Journal for Computer Science and Mathematics, 2022, 3 (01): : 83 - 93
  • [42] Ensemble Learning Approach for Intrusion Detection Systems in Industrial Internet of Things
    Nuaimi, Mudhafar
    Fourati, Lamia Chaari
    Ben Hamed, Bassem
    2023 20TH ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, AICCSA, 2023,
  • [43] Intrusion Detection using Support Vector Machine on Internet of Things Dataset
    Aditya, Rifky
    Nuha, Hilal H.
    Prabowo, Sidik
    Proceeding - IEEE International Conference on Communication, Networks and Satellite, COMNETSAT 2022, 2022, : 62 - 66
  • [44] Anomaly-based Network Intrusion Detection using Ensemble Machine Learning Approach
    Das, Abhijit
    Pramod
    Sunitha, B. S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (02) : 635 - 645
  • [45] Network Intrusion Detection Using Machine Learning Anomaly Detection Algorithms
    Hanifi, Khadija
    Bank, Hasan
    Karsligil, M. Elif
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [46] Towards Data-Driven Network Intrusion Detection Systems: Features Dimensionality Reduction and Machine Learning
    Maabreh M.
    Obeidat I.
    Elsoud E.A.
    Alnajjai A.
    Alzyoud R.
    Darwish O.
    International Journal of Interactive Mobile Technologies, 2022, 16 (14) : 123 - 135
  • [47] Machine Learning Based Network Intrusion Detection System for Internet of Things Cybersecurity
    Molcer, Piroska Stanic
    Pejic, Aleksandar
    Gulaci, Kristian
    Szalma, Reka
    SECURITY-RELATED ADVANCED TECHNOLOGIES IN CRITICAL INFRASTRUCTURE PROTECTION: THEORETICAL AND PRACTICAL APPROACH, 2022, : 95 - 110
  • [48] Quantum Machine Learning for Feature Selection in Internet of Things Network Intrusion Detection
    Davis, Patrick J.
    Coffey, Sean M.
    Beshaj, Lubjana
    Bastian, Nathaniel D.
    QUANTUM INFORMATION SCIENCE, SENSING, AND COMPUTATION XVI, 2024, 13028
  • [49] An Intrusion Detection System for the Internet of Things Based on Machine Learning: Review and Challenges
    Adnan, Ahmed
    Muhammed, Abdullah
    Abd Ghani, Abdul Azim
    Abdullah, Azizol
    Hakim, Fahrul
    SYMMETRY-BASEL, 2021, 13 (06):
  • [50] Intrusion detection based on machine learning in the internet of things, attacks and counter measures
    Rehman, Eid
    Haseeb-ud-Din, Muhammad
    Malik, Arif Jamal
    Khan, Tehmina Karmat
    Abbasi, Aaqif Afzaal
    Kadry, Seifedine
    Khan, Muhammad Attique
    Rho, Seungmin
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 8890 - 8924