Approximate smoothness in normed linear spaces

被引:4
|
作者
Chmielinski, Jacek [1 ]
Khurana, Divya [2 ]
Sain, Debmalya [3 ]
机构
[1] Pedag Univ Krakow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] IIM Ranchi Suchana Bhawan, Humanities & Appl Sci, Audrey House Campus,Meurs Rd, Ranchi 834008, Jharkhand, India
[3] Indian Inst Informat Technol, Dept Math, Raichur 584135, Karnataka, India
关键词
Smoothness; Rotundity; Approximate smoothness; Approximate rotundity; Birkhoff-James orthogonality; Approximate Birkhoff-James orthogonality; Supporting hyperplanes; Polyhedral spaces; Direct sums; BIRKHOFF-JAMES ORTHOGONALITY;
D O I
10.1007/s43037-023-00263-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of approximate smoothness in a normed linear space. We characterize this property and show the connections between smoothness and approximate smoothness for some spaces. As an application, we consider in particular the Birkhoff-James orthogonality and its right-additivity under the assumption of approximate smoothness.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] FULLY CONVEX NORMED LINEAR SPACES
    FAN, K
    GLICKSBERG, I
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1955, 41 (11) : 947 - 953
  • [32] Facility location in normed linear spaces
    Sorin Rădulescu
    Diana-Olimpia Alexandrescu
    Vicenţiu D. Rădulescu
    Optimization Letters, 2015, 9 : 1353 - 1369
  • [33] Torricellian points in normed linear spaces
    Sever S Dragomir
    Dan Comǎnescu
    Eder Kikianty
    Journal of Inequalities and Applications, 2013
  • [34] On neutrosophic n−normed linear spaces
    Kumar V.
    Sharma A.
    Murtaza S.
    Neutrosophic Sets and Systems, 2023, 61 : 275 - 288
  • [35] ON SOME INEQUALITIES IN NORMED LINEAR SPACES
    Dragomir, S. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (03): : 225 - 237
  • [36] A WEIERSTRASS THEOREM FOR NORMED LINEAR SPACES
    PRENTER, PM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (04) : 860 - &
  • [38] On Rectangular Constant in Normed Linear Spaces
    Paul, Kallol
    Ghosh, Puja
    Sain, Debmalya
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (03) : 917 - 925
  • [39] Bilinear Operators on Normed Linear Spaces
    Nakasho, Kazuhisa
    FORMALIZED MATHEMATICS, 2019, 27 (01): : 15 - 23
  • [40] Complete sets in normed linear spaces
    Chan He
    Horst Martini
    Senlin Wu
    Banach Journal of Mathematical Analysis, 2023, 17