A CNN-based transfer learning method for leakage detection of pipeline under multiple working conditions with AE signals

被引:40
|
作者
Liu, Pengqian [1 ]
Xu, Changhang [1 ]
Xie, Jing [1 ]
Fu, Mingfu [2 ,3 ]
Chen, Yifei [1 ]
Liu, Zichen [1 ]
Zhang, Zhiyuan [1 ]
机构
[1] China Univ Petr East China, Coll Mech & Elect Engn, Qingdao 266580, Peoples R China
[2] PipeChina West Pipeline Co, Urumqi 830011, Peoples R China
[3] China Univ Min & Technol, Sch Emergency Management & Safety Engn, Beijing 100083, Peoples R China
关键词
Acoustic emission; Pipeline leakage detection; Convolutional neural network; Transfer learning; ACOUSTIC-EMISSION; NEURAL-NETWORK; BAYESIAN-APPROACH; FAULT-DIAGNOSIS; RISK-ASSESSMENT; GAS; DECOMPOSITION; RECOGNITION; FLOW;
D O I
10.1016/j.psep.2022.12.070
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pipeline leakage detection is a crucial part of pipeline integrity management. Acoustic emission (AE) based leakage detection is widely used in this field. The latest detection methods are combined AE with convolutional neural networks. However, these methods are often confined to the complex signal processing and computing power and only target specific working conditions. To address these issues, this study proposes a convolutional neural network-based transfer learning (CNN-TL) method for pipeline leakage detection under multiple working conditions. Seven AE datasets are collected from pipeline leakage experiments under different work environments, transporting medium, and fluid pressure. The proposed method converted raw AE signals into threechannel images by a novel conversion method, which avoids reliance on expert knowledge and complex signal processing. CNN-TL is investigated by two different approaches, feature-based CNN-TL and parameterbased CNN-TL. The following nine pre-trained CNN models are used to select the optimal CNN-TL model: Alexnet, Squeezenet, Vgg19, Googlenet, Inceptionv3, Mobilenetv2, Xception, Resnet101, and Densenet201. Results show that the proposed feature-based CNN-TL method significantly outperformed parameter-based CNNTL and traditional CNN methods, especially on two-phase flow datasets. The highest accuracy of seven AE datasets obtained by the feature-based CNN-TL methods are 100.00%, 100.00%, 100.00%, 99.33%, 85.67%, 87.67%, 74.33%, 83.33% respectively. Moreover, the computation time of proposed method is 16.78 s on average by using the best layers in feature-based CNN-TL. It can be concluded that the proposed method does not rely on signal processing, requires less computational power, and can accomplish accurate detection of pipeline leaks under multiple working conditions.
引用
收藏
页码:1161 / 1172
页数:12
相关论文
共 50 条
  • [31] Fault Diagnosis Method of a Rolling Bearing Under Variable Working Conditions Based on Feature Transfer Learning
    Kang S.
    Hu M.
    Wang Y.
    Xie J.
    Mikulovich V.I.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (03): : 764 - 772
  • [32] An Improved Transfer Learning Method for Bearing Diagnosis under Variable Working Conditions Based on Dilated Convolution
    Wang, Hao
    Wang, Liya
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1612 - 1617
  • [33] An Intelligent Machinery Fault Diagnosis Method Based on GAN and Transfer Learning under Variable Working Conditions
    He, Wangpeng
    Chen, Jing
    Zhou, Yue
    Liu, Xuan
    Chen, Binqiang
    Guo, Baolong
    SENSORS, 2022, 22 (23)
  • [34] Detection Method for Submarine Oil Pipeline Leakage under Complex Sea Conditions by Unmanned Underwater Vehicle
    Zhao, Haifeng
    Zhang, Ya
    JOURNAL OF COASTAL RESEARCH, 2019, : 122 - 130
  • [35] "Study on vibration signals identification method for pipeline leakage detection based on deep learning technology" [Opt Commun 565 (2024) 130588]
    Zhang, Chengsan
    Liu, Shouling
    Zhao, Wenan
    Dong, Lulu
    Zhang, Yu
    Wang, Chen
    Qu, Shuai
    Yao, Chunmei
    Lv, Jingsheng
    Li, Shujuan
    Zhao, Qingchao
    Shang, Ying
    Liu, Guangqiang
    Ni, Jiasheng
    OPTICS COMMUNICATIONS, 2025, 578
  • [36] Incremental transfer learning for robot drilling state monitoring under multiple working conditions
    Shi, Jian
    Zhao, Xingwei
    Tao, Bo
    Tang, Zhouping
    Ding, Tao
    Lu, Hao
    Qiu, Taiwen
    Chen, Danyang
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024,
  • [37] Robust detection of seam carving with low ratio via pixel adjacency subtraction and CNN-based transfer learning
    Xia, Ming
    Chen, Jiyou
    Yang, Gaobo
    Wang, Shuai
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 75
  • [38] CNN-based transfer learning-BiLSTM network: A novel approach for COVID-19 infection detection
    Aslan, Muhammet Fatih
    Unlersen, Muhammed Fahri
    Sabanci, Kadir
    Durdu, Akif
    APPLIED SOFT COMPUTING, 2021, 98
  • [39] Transfer learning-based deep CNN model for multiple faults detection in SCIM
    Prashant Kumar
    Ananda Shankar Hati
    Neural Computing and Applications, 2021, 33 : 15851 - 15862
  • [40] Transfer learning-based deep CNN model for multiple faults detection in SCIM
    Kumar, Prashant
    Hati, Ananda Shankar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15851 - 15862