Performance investigation on the bypass ejector for a proton exchange membrane fuel cell system

被引:8
|
作者
Han, Jiquan [1 ,2 ]
Besagni, Giorgio [1 ]
Mereu, Riccardo [1 ]
Inzoli, Fabio [1 ]
Feng, Jianmei [2 ]
Peng, Xueyuan [2 ,3 ]
机构
[1] Politen Milano, Dept Energy, Via Lambruschini 4, I-20156 Milan, Italy
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
关键词
Ejector; Proton exchange membrane fuel cell; Hydrogen recirculation; Computational fluid dynamics; COMPUTATIONAL FLUID-DYNAMICS; R744 2-PHASE EJECTOR; STEAM EJECTOR; STRUCTURE OPTIMIZATION; AUXILIARY ENTRAINMENT; RECIRCULATION SYSTEM; NUMERICAL ASSESSMENT; NOZZLE EJECTOR; REFRIGERATION; DESIGN;
D O I
10.1016/j.applthermaleng.2024.122349
中图分类号
O414.1 [热力学];
学科分类号
摘要
The poor entrainment performance of the conventional ejector is a significant problem that makes it hard to use in proton exchange membrane fuel cell (PEMFC) systems. This study aims to evaluate the entrainment performance of a bypass ejector for a 100 kW PEMFC system. The effects of three critical geometric parameters, namely the axial position, width, and angle of the bypass inlet, on the entrainment performance are thoroughly investigated. The results demonstrate that the bypass flow exhibits a significant performance improvement in the critical mode. In contrast, the performance improvement is negligible and even negative in the subcritical mode. After careful evaluation of the entrainment performance across various stack powers, the optimal axial position, width, and angle of the bypass inlet are found to be 1.1, 2 mm, and 10(degrees), respectively. A comparative analysis between the bypass ejector and the conventional ejector underscores a significant advantage for the former, exhibiting a remarkable 22.1 % increase in the hydrogen entrainment ratio at the stack power of 101 kW. Nevertheless, the entrainment performance of the bypass ejector diminishes when operating at low stack powers below 24 kW.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Performance Investigation of Proton-Exchange Membrane Fuel Cell with Dean Flow Channels
    Wei, Lin
    Liao, Zihao
    Dafalla, Ahmed Mohmed
    Jiang, Fangming
    ENERGY TECHNOLOGY, 2022, 10 (03)
  • [32] Experimental investigation of the effect of hydrogen recirculation on the performance of a proton exchange membrane fuel cell
    Yu, Xingzi
    Fan, Jinwei
    Zhou, Yuhong
    Hao, Dong
    Chen, Jinrui
    Yu, Tao
    Zhang, Caizhi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (02) : 1183 - 1191
  • [33] Modeling and Control of Ejector-Based Hydrogen Circulation System for Proton Exchange Membrane Fuel Cell Systems
    Xu, Zecheng
    Liu, Bo
    Tong, Yuqi
    Dong, Zuomin
    Feng, Yanbiao
    ENERGIES, 2024, 17 (11)
  • [34] Study on performance of proton exchange membrane fuel cell with reformate fuel
    Yu, H.M.
    Yi, B.L.
    Bi, K.W.
    Hou, Z.J.
    Lin, Z.Y.
    Han, M.
    Dianyuan Jishu/Chinese Journal of Power Sources, 2001, 25 (04):
  • [35] Dynamic investigation on Proton Exchange Membrane fuel cell systems
    Haubrock, J.
    Heideck, G.
    Styczynski, Z.
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 2486 - +
  • [36] Experimental Investigation of Irreversibility of a Proton Exchange Membrane Fuel Cell
    Khazaee, I.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (02):
  • [37] INVESTIGATION OF CASCADE COOLING SYSTEM FOR DYNAMIC OPERATION OF PROTON EXCHANGE MEMBRANE FUEL CELL
    Woo, Jongbin
    Kim, Younghyeon
    Yu, Sangseok
    PROCEEDINGS OF THE ASME 2022 POWER CONFERENCE, POWER2022, 2022,
  • [38] Investigation into the characteristics of proton exchange membrane fuel cell-based power system
    Alrewq, Mohmmad
    Albarbar, Alhussein
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2016, 10 (03) : 200 - 206
  • [39] Scaleup effect on performance of proton exchange membrane fuel cell
    Leelasupakorn, Hong
    Kaewchada, Amaraporn
    Traisantikul, Watcharapon
    Tiengtrakarnsuk, Withawin
    Limtrakul, Sunun
    Vatanatham, Terdthai
    CHIANG MAI JOURNAL OF SCIENCE, 2008, 35 (01): : 89 - 94
  • [40] An experimental study on the performance of proton exchange membrane fuel cell
    Kellegoz, M.
    Ozkan, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2016, 18 (3-4): : 399 - 406