SABV-Depth: A biologically inspired deep learning network for monocular depth estimation

被引:10
|
作者
Wang, Junfan [1 ,2 ]
Chen, Yi [1 ,2 ]
Dong, Zhekang [1 ,2 ,3 ]
Gao, Mingyu [1 ,2 ]
Lin, Huipin [1 ,2 ]
Miao, Qiheng [4 ]
机构
[1] Hangzhou Dianzi Univ, Sch Elect Informat, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Equipment Elect, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Univ, Dept Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
[4] Zhejiang Huaruijie Technol Co Ltd, Hangzhou 310051, Zhejiang, Peoples R China
关键词
Depth estimation; Biological vision; Mapping relationship; Self -attention mechanism; VISION; MODEL; CONSCIOUSNESS;
D O I
10.1016/j.knosys.2023.110301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation makes it possible for machines to perceive the real world. The prediction performance of the depth estimation network based on deep learning will be affected due to the depth of the deep network and the locality of convolution operations. The imitation of the biological visual system and its functional structure is becoming a research hotspot. In this paper, we study the interpretability relationship between the biological visual system and the monocular depth estimation network. By concretizing the attention mechanism in biological vision, we propose a monocular depth estimation network based on the self-attention mechanism, named SABV-Depth, which can improve prediction accuracy. Inspired by the biological visual interaction mechanism, we focus on the information transfer between each module of the network and improve the information retention ability, and enable the network to output a depth map with rich object information and detailed information. Further, a decoder module with an inner-connection is proposed to recover depth maps with sharp edge contours. Our method is experimentally validated on the KITTI dataset and NYU Depth V2 dataset. The results show that compared with other works, the proposed method improves prediction accuracy. Meanwhile, the depth map has more object information and detail information, and a better edge information processing effect. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Monocular depth estimation with spatially coherent sliced network
    Su, Wen
    Zhang, Haifeng
    Su, Yuan
    Yu, Jun
    Wang, Zengfu
    IMAGE AND VISION COMPUTING, 2022, 124
  • [42] Lightweight Monocular Depth Estimation with an Edge Guided Network
    Dong, Xingshuai
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    Abbass, Hussein A.
    Dong, Junyu
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 204 - 210
  • [43] Double Refinement Network for Efficient Monocular Depth Estimation
    Durasov, Nikita
    Romanov, Mikhail
    Bubnova, Valeriya
    Bogomolov, Pavel
    Konushin, Anton
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5889 - 5894
  • [44] Neural Contourlet Network for Monocular 360° Depth Estimation
    Shen, Zhijie
    Lin, Chunyu
    Nie, Lang
    Liao, Kang
    Zhao, Yao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8574 - 8585
  • [45] Learning Regularizer for Monocular Depth Estimation with Adversarial Guidance
    Shen, Guibao
    Zhang, Yingkui
    Li, Jialu
    Wei, Mingqiang
    Wang, Qiong
    Chen, Guangyong
    Heng, Pheng-Ann
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5222 - 5230
  • [46] Learning monocular depth estimation with unsupervised trinocular assumptions
    Poggi, Matteo
    Tosi, Fabio
    Mattoccia, Stefano
    2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 324 - 333
  • [47] An Adaptive Unsupervised Learning Framework for Monocular Depth Estimation
    Yang, Delong
    Zhong, Xunyu
    Lin, Lixiong
    Peng, Xiafu
    IEEE ACCESS, 2019, 7 : 148142 - 148151
  • [48] Monocular Depth Estimation by Learning from Heterogeneous Datasets
    Gurram, Akhil
    Urfalioglu, Onay
    Halfaoui, Ibrahim
    Bouzaraa, Fand
    Lopez, Antonio M.
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 2176 - 2181
  • [49] Depth Estimation and Object Detection for Monocular Semantic SLAM Using Deep Convolutional Network
    Hou, Changbo
    Zhao, Xuejiao
    Lin, Yun
    COMPANION OF THE 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY (QRS-C 2020), 2020, : 256 - 263
  • [50] Monocular Depth Estimation Using Cues Inspired by Biological Vision Systems
    Auty, Dylan
    Mikolajczyk, Krystian
    Grp, MatchLab
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4051 - 4057