Embedded 3D Printing of PDMS-Based Microfluidic Chips for Biomedical Applications

被引:21
|
作者
Hua, Weijian [1 ]
Mitchell, Kellen [1 ]
Raymond, Lily [1 ]
Valentin, Naima [1 ]
Coulter, Ryan [1 ]
Jin, Yifei [1 ]
机构
[1] Univ Nevada, Dept Mech Engn, 1664 N Virginia St,MS 0312, Reno, NV 89557 USA
关键词
embedded 3D printing; PDMS; fumed silica; filament fidelity; microfluidic chips; additive manufacturing; FABRICATION; SOFT; ABSORPTION;
D O I
10.1115/1.4055323
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microfluidic devices made from polydimethylsiloxane (PDMS) have diverse biomedical applications. However, due to the poor printability of PDMS, current 3D printing techniques are rarely used to fabricate microfluidic devices. This study aims to investigate a fumed silica-PDMS suspension that can function as a matrix bath for embedded 3D printing (e-3DP) purposes, making it technically feasible to print microfluidic chips with complex embedded channels via low-cost extrusion 3D printing. The rheological properties, mechanical properties, transparency, and filament fidelity of the fumed silica-PDMS suspension have been systematically studied. It is found that the addition of fumed silica particles can effectively change PDMS from a viscous solution to a yield-stress suspension with suitable rheological properties for e-3DP. Also, the mechanical properties of the crosslinked fumed silica-PDMS are enhanced with an increased concentration of fumed silica. Although the transparency of PDMS has been lessened by mixing it with fumed silica particles, the visibility of the printed microfluidic chips is still acceptable. The filament fidelity has been studied by embedded printing filaments using a sacrificial ink in the fumed silica-PDMS suspension. Finally, two representative microfluidic chips for biomedical applications have been successfully printed to validate the effectiveness of the proposed fumed silica-PDMS suspension-enabled e-3DP method.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nanomaterial integrated 3D printing for biomedical applications
    Zhang, Liwen
    Forgham, Helen
    Shen, Ao
    Wang, Jiafan
    Zhu, Jiayuan
    Huang, Xumin
    Tang, Shi-Yang
    Xu, Chun
    Davis, Thomas P.
    Qiao, Ruirui
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (37) : 7473 - 7490
  • [22] 3D Printing of Silk Fibroin for Biomedical Applications
    Wang, Qiusheng
    Han, Guocong
    Yan, Shuqin
    Zhang, Qiang
    MATERIALS, 2019, 12 (03)
  • [23] Electrohydrodynamic jet 3D printing in biomedical applications
    Wu, Yang
    ACTA BIOMATERIALIA, 2021, 128 : 21 - 41
  • [24] Chitosan hydrogels in 3D printing for biomedical applications
    Rajabi, Mina
    McConnell, Michelle
    Cabral, Jaydee
    Ali, M. Azam
    CARBOHYDRATE POLYMERS, 2021, 260 (260)
  • [25] 3D printing for drug delivery and biomedical applications
    Beg, Sarwar
    Almalki, Waleed H.
    Malik, Arshi
    Farhan, Mohd
    Aatif, Mohammad
    Rahman, Ziyaur
    Alruwaili, Nabil K.
    Alrobaian, Majed
    Tarique, Mohammed
    Rahman, Mahfoozur
    DRUG DISCOVERY TODAY, 2020, 25 (09) : 1668 - 1681
  • [26] 3D printing of biomaterials for biomedical applications: a review
    Bhatti, S. S.
    Singh, Jasvinder
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023,
  • [27] PDMS-Based Microfluidic Devices for Cell Culture
    Torino, Stefania
    Corrado, Brunella
    Iodice, Mario
    Coppola, Giuseppe
    INVENTIONS, 2018, 3 (03)
  • [28] Novel valve for microfluidic PDMS-based systems
    Klammer, I.
    Buchenauer, A.
    Dura, G.
    Mokwa, W.
    Schnakenberg, U.
    MEMS 2008: 21ST IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2008, : 626 - 629
  • [29] Rapid fabrication of modular 3D paper-based microfluidic chips using projection-based 3D printing
    Mingjun Xie
    Zexin Fu
    Chunfei Lu
    Sufan Wu
    Lei Pan
    Yong He
    Yi Sun
    Ji Wang
    Bio-Design and Manufacturing, 2024, 7 (05) : 611 - 623
  • [30] Rapid fabrication of modular 3D paper-based microfluidic chips using projection-based 3D printing
    Xie, Mingjun
    Fu, Zexin
    Lu, Chunfei
    Wu, Sufan
    Pan, Lei
    He, Yong
    Sun, Yi
    Wang, Ji
    BIO-DESIGN AND MANUFACTURING, 2024, 7 (05) : 611 - 623