Segmentation of weakly visible environmental microorganism images using pair-wise deep learning features

被引:8
|
作者
Kulwa, Frank [1 ]
Li, Chen [1 ]
Grzegorzek, Marcin [2 ]
Rahaman, Md Mamunur [1 ]
Shirahama, Kimiaki [3 ]
Kosov, Sergey [4 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Microscop Image & Med Image Anal Grp, Shenyang 110169, Peoples R China
[2] Univ Lubeck, Inst Med Informat, Ratzeburger Allee 160, D-23538 Lubeck, Germany
[3] Kindai Univ, Fac Informat, 3-4-1 Kowakae, Osaka 5778502, Japan
[4] Jacobs Univ Bremen, Fac Data Engn, Bremen, Germany
基金
中国国家自然科学基金;
关键词
Microscopic images; Transparent microorganism; Image segmentation; Pair-wise features; Convolutional neural network; Environmental microorganism images; CLASSIFICATION; IDENTIFICATION; SELECTION; SYSTEM;
D O I
10.1016/j.bspc.2022.104168
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The use of Environmental Microorganisms (EMs) offers a highly efficient, low cost and harmless remedy to environmental pollution, by monitoring and decomposing of pollutants. This relies on how the EMs are correctly segmented and identified. With the aim of enhancing the segmentation of weakly visible EM images which are transparent, noisy and have low contrast, a Pairwise Deep Learning Feature Network (PDLF-Net) is proposed in this study. The use of PDLFs enables the network to focus more on the foreground (EMs) by concatenating the pairwise deep learning features of each image to different blocks of the base model SegNet. Leveraging the Shi and Tomas descriptors, we extract each image's deep features on the patches, which are centred at each descriptor using the VGG-16 model. Then, to learn the intermediate characteristics between the descriptors, pairing of the features is performed based on the Delaunay triangulation theorem to form pairwise deep learning features. In this experiment, the PDLF-Net achieves outstanding segmentation results of 89.24%, 63.20%, 77.27%, 35.15%, 89.72%, 91.44% and 89.30% on the accuracy, IoU, Dice, VOE, sensitivity, precision and specificity, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] STREET LIGHT SEGMENTATION IN SATELLITE IMAGES USING DEEP LEARNING
    Teixeira, Ana Claudia
    Carneiro, Gabriel
    Filipe, Vitor
    Cunha, Antonio
    Sousa, Joaquim J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6862 - 6865
  • [32] Melanoma Segmentation and Classification in Clinical Images Using Deep Learning
    Ge, Yunhao
    Li, Bin
    Zhao, Yanzheng
    Guan, Enguang
    Yan, Weixin
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 252 - 256
  • [33] Semantic segmentation of multispectral photoacoustic images using deep learning
    Schellenberg, Melanie
    Dreher, Kris K.
    Holzwarth, Niklas
    Isensee, Fabian
    Reinke, Annika
    Schreck, Nicholas
    Seitel, Alexander
    Tizabi, Minu D.
    Maier-Hein, Lena
    Groehl, Janek
    PHOTOACOUSTICS, 2022, 26
  • [34] Temporomandibular joint segmentation in MRI images using deep learning
    Li, Mengxun
    Punithakumar, Kumaradevan
    Major, Paul W.
    Le, Lawrence H.
    Nguyen, Kim-Cuong T.
    Pacheco-Pereira, Camila
    Kaipatur, Neelambar R.
    Nebbe, Brian
    Jaremko, Jacob L.
    Almeida, Fabiana T.
    JOURNAL OF DENTISTRY, 2022, 127
  • [35] Segmentation of Nucleus in Histopathological Images Using Deep Learning Architectures
    Ayaz, Ogun
    Usta, Hamdullah
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [36] Automatic Prostate Segmentation using Deep Learning and MR Images
    Yuan, Y.
    Qin, W.
    Buyyounouski, M. K.
    Hancock, S. L.
    Bagshaw, H. P.
    Han, B.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E379 - E379
  • [37] Skin Lesion Segmentation in Clinical Images Using Deep Learning
    Jafari, M. H.
    Karimi, N.
    Nasr-Esfahani, E.
    Samavi, S.
    Soroushmehr, S. M. R.
    Ward, K.
    Najarian, K.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 337 - 342
  • [38] Brain Tumor Segmentation Using Deep Learning on MRI Images
    Mostafa, Almetwally M.
    Zakariah, Mohammed
    Aldakheel, Eman Abdullah
    DIAGNOSTICS, 2023, 13 (09)
  • [39] Learning Deep Spatial-Spectral Features for Material Segmentation in Hyperspectral Images
    Zhang, Yu
    King Ngi Ngan
    Cong Phuoc Huynh
    Habili, Narhnan
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 172 - 178
  • [40] Breast Cancer Histopathological Images Segmentation Using Deep Learning
    Drioua, Wafaa Rajaa
    Benamrane, Nacera
    Sais, Lakhdar
    SENSORS, 2023, 23 (17)